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Ripley’s K function is the classical tool to characterize the spatial structure of point patterns. It is widely used in vegetation studies.
Testing its values against a null hypothesis usually relies on Monte-Carlo simulations since little is known about its distribution.
We introduce a statistical test against complete spatial randomness (CSR). The test returns the P value to reject the null hypothesis
of independence between point locations. It is more rigorous and faster than classical Monte-Carlo simulations. We show how to
apply it to a tropical forest plot. The necessary R code is provided.

1. Introduction

The commonest tool used to characterize the spatial structure
of a point set is Ripley’s K statistic [1, 2]. It has been
widely used in ecology and other scientific fields and is well
referenced in handbooks [3-7]. Classically, an observed set
of points is tested against a homogeneous Poisson point
process taken as a null model. Since little is known about
the distribution of the K function, the test of rejection of
the null hypothesis relies on Monte-Carlo simulations. Large
point patterns are difficult to deal with because computation
time is roughly proportional to the square of the number of
points (to calculate the distances between all pairs of points)
multiplied by the number of simulations. Moreover, the test is
valid for one distance but using it repeatedly for all distances
where the K function is calculated dramatically increases
the risk to reject the null hypothesis by error [8]. Duranton
and Overman [9] provided a heuristic global test followed
by Marcon and Puech [10]. Loosmore and Ford proposed a
goodness-of-fit test to eliminate this error, but still rely on
Monte-Carlo simulations.

We showed in [11] that a global test was able to return a
classical P value, that is to say, the probability to erroneously
reject the null model, relying on exact values of the biases

and variances of the statistics. We derived its asymptotic
properties in a growing square window. We develop it in
this paper so that it can be used in a rectangular window, as
most applications require. We show that it can be applied to
real point patterns, even with a little number of points and
discuss in depth the way to employ it, so that it can be used
by empirical researchers.

We first present our motivating example: a tropical forest
plot where we want to elucidate the spatial structure of two
species of trees. We provide the mathematical framework
supporting the test. We apply it to the dataset and present the
results. In the Discussion, we review the literature of previous
tests to show why this one is a significant improvement and
we verify that the test actually works. Finally, we provide a
user guide to allow researchers to easily apply the test with
the provided R [12] code.

2. Materials and Methods

2.1. Data to Analyze. We consider the distribution of two tree
species in Paracou field station, French Guiana [13]. All trees
over 10 cm DBH have been plotted. We use data from a 400.6
by 522.3 meters rectangle included in the four plots of the
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FIGURE 1: Map of Tachigali melinonii (94 trees, (a)) and Dicorynia guianensis (254 trees, (b)).

southern block of the experimental device. A map of trees is
in Figure 1.

Dicorynia guianensis Amsh. is a widely studied species in
French Guiana; its spatial structure has been characterized for
a long time [14, 15]; as a visual inspection of the map allows
to guess, Dicorynia guianensis is an aggregated species.

Much less is known about Tachigali melinonii (Harms)
Barneby. The species has been studied for its special biome-
chanical behavior [16] or leaf trait plasticity [17]. The spatial
structure of its saplings has been reported by Flores et al. [18]
but the structure of adult trees is not clear.

2.2. Mathematical Framework. We consider a point pattern
in a rectangular window. /; and [, are the sides of the window
(width and length). p is the intensity of the underlying
point process; estimated by the number of observed points
N divided by the area of the window. We denote by r the
vector of distances (r,,...,7;,...,r;). We omit the subscript
for readability when there is no ambiguity; r is one of the
distances, and K(r) is the estimator of K at distance r. Points
are denoted by &;, and I{d(;, & ;) < r}isan indicator function
equal to 1 when the distance between two points is less than
or equal to r, 0 else. Details of the calculation are not provided
as we follow exactly Lang and Marcon [11] but its important
steps and intuitions are presented here.

Ripley’s K function is estimated from the data for each
distance 7, without correction for edge effects:

~ Ll
Ro-gap 2 Gyt o

i #&;

Assumptions are those of Ripley’s K function: we test the
independence of locations of an observed point pattern,
assumed to be a realization of a homogenous point pro-
cess. Homogeneity means both stationarity (the process

in unchanged by translation) and isotropy (the process is
unchanged by rotation). Thus the null hypothesis of complete
spatial randomness (CSR) is that the point process is a
homogenous Poisson process.

The expectation of K(r) under CSR is 77, Edge effects
introduce a bias in K(r), computed for the null model:

4r° 4
s (ll+lz) N rz . (2)
341, 2L
Estimated K (r) can be corrected for the bias of the null model
to test them against it. We get a vector of results of length d:

K= (K () = B(r),K (r;) = B(r),....K (ra) = B(ra)).
(3)
For a homogenous point process the vector K - nr’ is
asymptotically normal, with expectation zero and the explicit
variance matrix X:
Var (E (rl)) cov (E (r,),K (rd))
X= : :

cov (I? (rl) ,E(rd)) Var (E (”d))

(4)

Consequently T? = |=7V2(K - nr? )||2 follows a X2 law with
d degrees of freedom. Asymptotic value of the variance is
reached with dozens of thousand points, so it is of little use,
but normality is acceptable with very few points so the test
can be used with real data, as the exact value of X can be
calculated. The exact calculation of variance and covariance
is quite painful because it takes into account the edge effects,
resulting in the formulas given in Appendix A.
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2.3. Application. The test is applied as follows: (i) compute
K — 7r? from the observed point pattern, following (3); (ii)
compute X according to the window’s size and the number of
observed points; (iii) finally compare T? = |z V2K - 7rr2)||2
toa y” distribution with d degrees of freedom and return the
P value.

We provide a classical plot of L(r) = K(r)/m — r [19]
against r, computing every 5 meters up to 250 m (to illustrate
the discussion). 1,000 simulations of a binomial process with
the same number of points as the real data are run. At each
distance r, the 25 lower and greater values are eliminated to
build the local 5% confidence interval. The global confidence
interval is built iteratively [9, 10]; simulations corresponding
to extreme values (maximum or minimum) at any distance
are eliminated. This process is repeated until 5% of the
simulations are concerned. The extreme remaining values are
plotted. Interpolation is used if the last iteration eliminates
more simulations than required.

We apply our test to these two point sets, up to 150
meters following Collinet [15] who characterized the spatial
structure of many species in Paracou and detected possible
dependence at this scale. The vector of distances is r =
(10,20,...,150) meters; we discuss this choice later. Finally,
we apply Loosmore and Ford’s test based on the same r and
1,000 simulations.

3. Results

Aggregation of Dicorynia guianensis is obvious on
Figure 2(b). Our test applied with the vector of distances (10,
20, ..., 150 meters) returns a P value equal to zero; that is
to say, the quantile of the x* distribution with 15 degrees
of freedom for T is so low that R returns 0. Loosmore and
Ford’s test gives the same result with a value of their statistic
u, much greater than all simulations.

Figure 2(a) shows a less clear structure of Tachigali meli-
nonii. The curve leaves the local confidence interval many
times, but not the global one. Our test applied with the same
distance vector (10 to 150 m) returns a P value equal to 2.5%;
aggregation is significant.

Loosmore and Ford’s test applied to the same distance
range returns a P value equal to 1.7% + 0.8% (u, is ranked
984th among the 1,000 simulations).

4. Discussion

4.1. Foundations of the Test. Many methods exist to test a
point pattern against CSR [7, page 83:98], among which the
relative variance [20, 21] or tests based on the nearest neigh-
bors [22-24]. Tests based on the K function are particularly
appealing because K provides data about the relative position
of points at different scales, and the function simultaneously
gives useful information about the point process.

4.1.1. The Distribution off(r) under CSR Was Unknown. The
classical, local test consists in comparing each observed K(r)
to the confidence interval of K(r) obtained by Monte-Carlo

simulations of the null model (which should be a homoge-
nous Poisson point process, but is usually approximated by
a binomial process for simplicity, artificially reducing vari-
ability). The null model is rejected at the chosen significance
level, 5%, when the observed K(r) is out of the corresponding
confidence interval.

To avoid simulations, approximate confidence intervals
for K(r) were proposed by Ripley [25], refuted by Koen [26]
whose errors were finally corrected by Chiu [27]. All these
confidence intervals were built on simulations.

The variance of K(r) has been investigated early (see [5,
page 58]). Asymptotic variance was calculated and asymp-
totic normality was proved, allowing calculating a confidence
interval for K(r), but the exact variance remains far from
its asymptotic value for usual point sets [11]. We derived the
exact variance in Appendix A.

4.1.2. Testing K(r) along Many Values of r Is Not Correct. In
our examples, we have 30 values of K(r). If we draw a point
pattern in a Poisson process we can expect 5% of them, that
is, 1 or 2 of them, to be out of the confidence interval. As
a consequence, the local significance level of the test should
be decreased dramatically to have a global significance level
of 5%. Actually, K(r) are highly correlated because K is a
cumulative function; roughly speaking, most of K(r) values
come from that of the previous one (see Figure 3). This
reduces the need for a correction but does not eliminate it
completely [28]. Since no quantification of the correction
is available, the local test is used, keeping in mind that the
global significance level of the test is somehow higher than
announced (see [7, page 456] for a discussion). Each of the
local confidence interval values is correct but testing a curve
made of 30 points against local confidence envelope is not [8].

To address this issue, solutions have been proposed.
Duranton and Overman [9] proposed a test consisting in
eliminating simulated K vectors globally when one of their
values is an extreme one. Global confidence intervals plotted
in the figures are heuristic; they do not rely on any mathemat-
ical proof. They appear to be too conservative for Tachigali
melinonii.

4.1.3. Goodness-of-Fit Tests Are a Solution. Goodness-of-fit
(GOF) tests measure the discrepancy between the expected
curve of K under the null hypothesis and the actual curve.
This value can be compared to its quantiles under CSR.
Loosmore and Ford’s [8] test is a GOF test, already proposed
by Diggle [4]. Its quantiles are not known so the test relies
on Monte-Carlo simulations. Three GoF tests have been
proposed by Heinrich [29] but all of them are asymptotic so
none can be used with real data. Our test is very similar to
Heinrich’s x° test, but as we derived the bias due to edge effects
and the exact variance-covariance matrix of K under CSR, we
were able to compute the T statistic, which follows an y* law
whose quantiles are well known.

4.1.4. Graphical Interpretation of the Test. Figure 3(a) shows
the correlation of values of K — 7r? for two different values
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FIGURE 2: L values for Tachigali melinonii (a) and Dicorynia guianensis (b). Distances are in meters. Confidence intervals are computed for the
null hypothesis of complete spatial randomness at the 5% significance level. The local [4] and global [9] confidence intervals are calculated
by Monte-Carlo simulations as explained in the text. Test P values are respectively 0 and 2.5%.
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FIGURE 3: (a) Plot of K minus its expectation 77* in two dimensions (r = 2 and r = 5) for 500 simulations of a Poisson process of intensity
p = 5 drawn in a square window of size 10 (500 points on average). (b) Comparison of values of T(2) and T'(5), after transformation. Around
25 simulations of the homogenous point process out of 500 lie out of the critical circle corresponding to T> > 2, (2) so they are rejected by

the test.

of r. Each point represents a simulation of a Poisson process.
The plot should be imagined in a number of dimensions d
equal to the number of r values. As K is a cumulative function,
its values are highly autocorrelated. Figure 3(a) presents the
results of simulations of a Poisson point process. Some are
slightly aggregated (positive values); others are dispersed

(negative values) due to stochasticity. Multiplying by =™'/2

yields values of T = £/2(K — 7r®) that are independent,
centered, and of variance 1 (Figure 3(b)). We denote by T'(r)
each element of Tand T = || T|.

The circle’s radius is the square root of the 5% critical value
ofan y” distribution with 2 degrees of freedom. Point patterns
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TABLE 1: Number of rejections of the null hypothesis (the point
process is Poisson) out of 10,000 simulations of a homogenous point
process in a rectangular 10 by 15 window. The significance level is 5%,
s0 500 simulations are expected to be rejected. The intensity varies
from 1/3 to 10 so that the expected number of points varies from 50
to 1500, covering the range of usually-studied point patterns.

Expected number of points 50 100 150 300 750 1500
Number of rejections 592 587 543 537 524 543

corresponding to plots outside the circle are rejected. Thus,
the test detects significant regularity of points (example not
shown) as well as aggregation.

Transforming correlated K values into independent T
whose squared norm follows an x* distribution relies on the
exact, not asymptotic, variance matrix.

4.1.5. Correcting Edge Effects for the Null Model Is a Better
Choice. Classically, edge effects are corrected when estimat-
ing K. Corrections assume unseen neighbors exist beyond
the window’s limits and evaluate their number according to
observed data inside the window. We prefer to calculate the
bias of the null model and compare empirical, uncorrected
values of K to their expected, biased values; see (3). We follow
Gignoux et al. [24] who showed that testing data against
CSR with nearest-neighbor functions was more powerful
when ignoring edge effects (i.e., neither the actual point
pattern nor Monte-Carlo simulations of the null hypothesis
were corrected). Heuristically, correcting edge effects for each
point means adding neighbors uniformly, reducing the power
of the test against CSR.

4.2. Test of the Test. Although we use the exact variance
matrix, we only proved asymptotical normality. This is a
common issue of statistical tests; the confidence interval of an
average value calculated from 30 repeated measures is usually
evaluated assuming normality, only asymptotically proved.

We evaluated the minimum number of points necessary
to validate the level of the test. We simulated 10,000 realiza-
tions of a Poisson point process in a 10 x 15 rectangle window
and tested them. K was calculated at distances 1, 2, 3, 4, and 5.
Intensity was chosen between 1/3 and 10, so that the expected
number of points ranged between 50 and 1500.

Figure 4 shows the actual levels of rejections of the test
(extreme intensities only are shown for readability). When
points are few, the number of simulated patterns whose T
value is above the critical value of y* at low risk levels (e.g.,
1%) is a little more than the risk level. At the 5% risk level, we
believe the test results are acceptable for practical purposes
even with very few points. We expect 500 simulations to be
rejected; Table 1 shows the rejection level is always under 6%.

We also wanted to evaluate the power of the test, that
is to say, its ability to reject point patterns that are not
completely random but hard to detect. Grabarnik and Chiu
[30] proposed to use a mixture of Matérn and Strauss
processes as a counterfactual. They tested the ability different
statistics including Ripley’s K to distinguish them from a
Poisson process. We followed them to draw a power test

0.15

0.10

Test percentiles

0.05

0.00

T T T T
0.00 0.05 0.10 0.15

Expected percentiles

FIGURE 4: Actual rejection levels versus expected ones: ordinates are
the quantiles of simulated Poisson point patterns whose P values are
below the value in abscissa. Curves are built from 10,000 simulations
of homogenous Poisson point processes with different intensities
(solid line: 50 points expected, dashed line: 1500 points). More
simulations are rejected than should be when the number of points
is low, but the discrepancy is less than 1%. With 1500 points, the
quantiles of the test are very close to their expected values.

presented in Appendix B. Unsurprisingly, we find that our
tests power is very similar to that of K in Grabarnik and
Chiu’s tests.

4.3. Choosing the Distance Vector. The choice of r values (the
vector of distances) is arbitrary. If the point process is actually
a homogenous Poisson, results are identical whatever r is.
Since it may not be, some rules should be followed; choosing
the distances up to the expected range of interactions, with
uniform steps, allows an “objective” analysis of the data [29],
better than selecting values from the plots.

The T statistic is the sum of contributions of T'(r) for
all r values. T(r) are made independent by construction.
Taking into account distances above the maximum range of
interaction between points limits the power of the test since
a fraction of the T'(r) values are purely stochastic. This is a
normal behavior for a goodness-of-fit test. When used on
the whole distance range 0-250, Loosmore and Ford’s [8] test
applied to the Tachigali example loses its power and returns
a P value equal to 23.5%. In the same conditions, our test
returns a P value equal to 6.3%; it appears to lose much
less power when noisy data (there is no interaction between
points at such distances) is introduced in the analysis. We
chose to investigate distances up to 150 meters because we
knew this was the possible range of interest.

The last question is the number of distances considered.
Too many values increase stochasticity relatively to the
number of points (the number of new point pairs at each
new value of r gets more variable, if not often zero), while too
few values do not allow to detect all scales of the pattern. In



n =100

100

100

n =200

ISRN Ecology

n = 300

100

(%)

80
60
40
20

(%)

0
00 02 04 06 08
(a)

1.0 1.2

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20

()

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20
(©

(%)
(%)

100
80
~ 60 N
S I
~ 40 QU
20

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20
(d)

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20

(e)

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20
()

(%)

100

80
© 60 gl
(S It
S )

20

(g)

0.00 0.20 0.40 0.60 0.80 1.00 1.20
(h)

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20
)

100 100
80 80 v\M
~ 60 ~ 60 - : : : : ~
x X I
~ 40 ~ 40
20 20
0

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20
(0)

0
0.00 0.20 0.40 0.60 0.80 1.00 1.20

(S}

0.00 0.20 0.40 0.60 0.80 1.00 1.20
O

FIGURE 5: Power of the test against a mixture of clustered and repulsive point processes. 7 is the number of simulated points, p a parameter of
aggregation. Values are the ratio of simulated point patterns rejected by the test as a function of 3, a parameter indicating repulsion strength.

See the text for complete explanations.

order to integrate all the information, steps between r values
should be coherent with the processes to detect. 15 steps of
10 meters appear to be a correct way to test the structure of
Tachigali. 5-meter steps are too small considering the density
of the pattern (see Figure 1), and 20-meter steps are too large
for the process we consider.

4.4. Application of the Test: A User’s Guide. We provide a
test for a point pattern observed in a rectangular window
against CSR. The code to run it with R is available as a
supplementary material available online at http://dx.doi.org/
10.1155/2013/753475. The function Ktest accepts a point pat-
tern object as defined in the spatstat package [31] and a vector
of distances r. It returns a P value (the risk of error if CSR is
rejected).

Distances should be chosen up to the range of possible
interactions, with equal intervals small enough to describe
correctly the pattern, but too many steps if points are few.

The maximum distance K(r) is computed must be less than or

equal to half the width of the rectangle. This is a classical geo-
metrical limitation, already faced by local edge-effect correc-
tions [4] and [32, corrected up to half the length]. Rectangu-
lar windows only are supported.

The test does not give information on what values of r
are responsible for its significance. Practically, in order not
to lose usual references, a graphical representation of K or,
better, its transformed function L, should be provided with
local confidence intervals. If the number of points is great,
the number of Monte-Carlo simulations can be reduced since
these intervals are not used for the test.

5. Conclusion

Characterizing the spatial structure of a dataset representing
the location of plants in an experimental plot is a common
task for ecologists [33]. We provide a rigorous statistical test
to reject the null hypothesis that K values of an observed
point pattern in a rectangle window are that of a realization
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of a homogenous Poisson point process. This test replaces
advantageously the classical Monte-Carlo one. It will rather
complete it in practical applications since Monte-Carlo simu-
lations provide useful local information on the point process.

The test is ready to use with the provided R code to be
found in the electronic appendices.

Future work includes both supporting more complex
shapes, probably triangle assemblies following Pélissier and
Goreaud [34], and other point processes as null hypotheses.
Although it is still limited to the simplest applications, we
believe this test is an important step towards more rigorous
spatial statistics, based on analytical results rather than
simulations.

Appendices

A. Variance and Covariance

We consider a point pattern in a rectangular window as
described in Section2.2. r and r’ are two distances the
function is estimated at; ' is larger than r. I(N > 1) is an
indicator function equal to 1 when N > 1, 0 else. E(X) is the
expectation of the random variable X.

K(r) is the estimator of Ripley’s K function at distance r.
The formulas of variance of K(r) and covariance of K(r) and
K(r") are explicated here.

A.lL Variance. One has

Var (I? (r)) = 2lfl§[E ( [(N>1) ) (er,ll,lz - ef,ll,lz)

N(N-1)
I(N>1D](N-2
+4lfz§[E<[ (N>(N)]_(1) )>V(r,ll,lz)

+B2e Pl (14 pliL,)

—phl Plllz) 2
X (1 —e - plile €1

(AJ)
where
. _ n_r2 B 4° (ll+lz) (A2)
el T 31,1, 28212 ‘
" (L+l,) /8 256
V() = — 2 (—71 >
P BB \3" 45

J 16(1,+1,)*
L (8 161y +1,)” (A3)
PB\48" 9 L1,

477 (ll+lz) B S
310 410
e,;,, is the expectation of K(r) divided by the window’s area.

The main term is 7rr* divided by 1,1, and the other terms
correspond to the bias due to edge effects.

p in (A.l) is unknown, so it is estimated by N/(I,1,).

7
A.2. Covariance. One has
cov (I? (r) ,I?(r’))
I(N>1)
= 2PLE <—N N1 ) (erti, = €rtyeri,)
(I (N >1)](N-2)
+4lfl§[E< N )Ort)
FEREME (14 pl)
(1 e Phk - plLe p”) €, 1L Cr 1, >
(A.4)
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2
=, -2r") (L -2r") = i —=bnb
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' x' r'x'
+hys (—,r) +hyy (—J)]
r
X (hA3 (x',r') + hyy (x',r)) dxdx,
(A.5)
4r (1, +1
b1, =7T—llerzz = —r(1+2) EYIR (A.6)
) r 1k 31112 21112
gx)=I0<x< 1)(arccosx+x\/1—x2>, (A7)

hy (x,7) = b, ZI(xl 21)I(x, 21),

hy (x,7) = ( L (xz))l(xl >1)I(x;, <1)

+ (b, = 9 (1)) 1 (x, 2 1) I (x, < 1),



hys (x,1) = (br,zl,z2 ~g(x)-g (xz))
xI(x; <1)I(x,< 1)I(xf+x§ > 1),

b, —E+x1x2— g(x1)+g(x2))
4 2

hy, (x,1) = (

xI(xf+x§s1).

(A.8)

E(I(N > 1)/N(N - 1)) and E([I(N > 1)[(N = 2)/N(N - 1))
are estimated by 1/N(N — 1) and (N - 2)/N(N - 1) as N
follows a Poisson law [11].

B. Power Test

Grabarnik and Chiu [30] proposed a new statistic (Q?) to test
data against complete spatial randomness. Q” is of little use
in practical situations because it suffers edge effects with no
correction for them. We are interested here in the power test
proposed by the authors. From a mathematical point of view,
mixtures of a clumped and a repulsive point process are an
interesting challenge for a test built to reject Poisson processes
whose K values are intermediate. From an ecological point of
view, these patterns make sense if we think of the processes
responsible for, say, tree locations; aggregation is expected
in regeneration processes and repulsion in competition pro-
cesses. For example, Aldrich et al. [35] study the relative
importance of the two processes along 60 years of the life of
a forest.

We drew the same simulations as a power test. n (100,
200, or 300) is the number of points of the simulated point
pattern in a window of area 7/200. Half of them are drawn
in a Matérn [36] process whose centers are drawn uniformly
in the window (centers are not included in the point pattern)
and offsprings are drawn less than 0.06 apart from centers.
The number of offsprings around each center is drawn in a
Poisson law of expectation p (1, 2, 3, or 4). Centers are added
until the number of offsprings reaches n/2. The other half
of points is drawn in a Strauss [37] process with interaction
radius 0.06 and interaction parameter 3. Actually, Grabarnik
and Chiu used a Gibbs process with a fixed number of
points [7] where f3 is the pair potential function (from 0 for
no interaction to 1.2 for strong repulsion). The interaction
parameter in usual presentations of the Strauss process (see
[38, page 85]) is ¢ P For each parameter set (1, p, f3), 10,000
point sets are drawn and tested against CSR. Results are
summarized in Figure 5.

Increasing the number of points (going right in the figure)
improves the power of the test. Clustering increases with
p (going down the figure) while repulsion increases with f3
(going right along curves). The result is the ratio of rejected
simulations at a 5% risk level. It should be above 95% if the
test was perfect but the point pattern is designed to be difficult
to test, especially when parameters are all small (few clusters,
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no repulsion; the process is close to Poisson) or intermediate
(clustering of some points compensates repulsion of others).

Grabarnik and Chiu rejected CSR when the maximum
departure of K from 7z7* excessed that of 95% of a simulated
binomial process of n points. A comparison between Figure 5
and their Figure 2 shows that powers are similar, even though
their test is too optimistic according to Loosmore and Ford
[8].

In summary, we can see here that the tendencies observed
for the K function’s power with Monte-Carlo simulations
remain valid. K is not very efficient to disentangle mixed
clustered and repulsive point processes with both high p and
high f3 (Grabarnik and Chiu showed that Diggle’s G is better
for that purpose) but rather powerful to detect clustering.

Acknowledgment

This work has benefited from an “Investissement d’Avenir”
Grant managed by Agence Nationale de la Recherche (CEBA,
ref. ANR-10-LABX-0025).

References

[1] B. D. Ripley, “The second-order analysis of stationary point
processes;” Journal of Applied Probability, vol. 13, no. 2, pp. 255-
266, 1976.

[2] B. D. Ripley, “Modelling spatial patterns,” Journal of the Royal
Statistical Society B, vol. 39, no. 2, pp. 172-212,1977.

[3] B. D. Ripley, Spatial Statistics, John Wiley & Sons, New York,
NY, USA, 1981.

[4] P.J. Diggle, Statistical Analysis of Spatial Point Patterns, Aca-
demic Press, London, UK, 1983.

[5] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and
Its Applications, John Wiley & Sons, New York, NY, USA, 1987.

[6] N. A. Cressie, Statistics for Spatial Data, John Wiley & Sons, New
York, NY, USA, 1993.

[7] J.1llian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Anal-
ysis and Modelling of Spatial Point Patterns, Wiley-Interscience,
Chichester, UK, 2008.

[8] N. B. Loosmore and E. D. Ford, “Statistical inference using the
G or K point pattern spatial statistics,” Ecology, vol. 87, no. 8, pp.
1925-1931, 2006.

[9] G.Durantonand H. G. Overman, “Testing for localization using
micro-geographic data,” Review of Economic Studies, vol. 72, no.
4, pp. 1077-1106, 2005.

[10] E. Marcon and E Puech, “Measures of the geographic con-
centration of industries: improving distance-based methods,”
Journal of Economic Geography, vol. 10, no. 5, pp. 745-762, 2010.

[11] G. Lang and E. Marcon, “Testing randomness of spatial point
patterns with the Ripley statistic; ESAIM: Probability and
Statistics, 2013.

[12] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2013.

[13] S.Gourlet-Fleury, J. M. Guehl, and O. Laroussinie, Eds., Ecology
& Management of a Neotropical Rainforest. Lessons Drawn from
Paracou, a Long-Term Experimental Research Site in French
Guiana, Elsevier, Paris, France, 2004.

[14] E Goreaud, B. Courbaud, and E Collinet, “Spatial struc-
ture analysis applied to modelling of forest dynamics: a few



ISRN Ecology

examples,” in Proceedings of the IUFRO Workshop: Empirical

and Process-Based Models for Forest Tree and Stand Growth

Simulation, A. Amaro and M. Tomé, Eds., pp. 155-172, Novas

Tecnologias, Oeiras, Portugal, 1997.

E Collinet, Essai de regroupement des principales espéces struc-

turantes d'une forét dense humide daprés leur répartition spatiale

(forét de Paracou, Guyane) [Ph.D. thesis], Université Claude

Bernard-Lyon I, Lyon, France, 1997.

[16] G.Jaouen, M. Fournier, and T. Almeras, “Thigmomorphogen-
esis versus light in biomechanical growth strategies of saplings
of two tropical rain forest tree species,” Annals of Forest Science,
vol. 67, no. 2, p. 211, 2010.

[17] S. Coste, J. C. Roggy, L. Garraud, P. Heuret, E. Nicolini, and E.
Dreyer, “Does ontogeny modulate irradiance-elicited plasticity
of leaf traits in saplings of rain-forest tree species? A test
with Dicorynia guianensis and Tachigali melinonii (Fabaceae,
Caesalpinioideae),” Annals of Forest Science, vol. 66, no. 7, p. 709,
2009.

[18] O. Flores, S. Gourlet-Fleury, and N. Picard, “Local disturbance,

forest structure and dispersal effects on sapling distribution

of light-demanding and shade-tolerant species in a French

Guianian forest,” Acta Oecologica, vol. 29, no. 2, pp. 141-154,

2006.

J. E. Besag, “Comments on Ripley’s paper,” Journal of the Royal

Statistical Society B, vol. 39, no. 2, pp. 193-195, 1977.

[20] A. R. Clapham, “Over-dispersion in grassland communities
and the use of statistical methods in plant ecology;” Journal of
Ecology, vol. 24, no. 1, pp. 232-251, 1936.

[21] P. G. Hoel, “On indices of dispersion,” The Annals of Mathemat-
ical Statistics, vol. 14, no. 2, pp. 155-162, 1943.

[22] P. J. Diggle, “On parameter estimation and goodness-of-fit
testing for spatial point patterns,” Biometrics, vol. 35, no. 1, pp.
87-101, 1979.

[23] M. N. M. van Lieshout and A. J. Baddeley, “A nonparametric
measure of spatial interaction in point patterns,” Statistica
Neerlandica, vol. 50, no. 3, pp. 344-361, 1996.

[24] J. Gignoux, C. Duby, and S. Barot, “Comparing the per-
formances of Diggle’s tests of spatial randomness for small
samples with and without edge-effect correction: application to
ecological data,” Biometrics, vol. 55, no. 1, pp. 156-164, 1999.

[25] B. D. Ripley, “Tests of ‘randomness’ for spatial point patterns,”
Journal of the Royal Statistical Society B, vol. 41, no. 3, pp. 368-
374, 1979.

[26] C. Koen, “Approximate confidence bounds for Ripley’s statistic
for random points in a square,” Biometrical Journal, vol. 33, pp.
173-177,1991.

[27] S.N. Chiu, “Correction to Koen’s critical values in testing spatial
randomness,” Journal of Statistical Computation and Simulation,
vol. 77, no. 11-12, pp. 1001-1004, 2007.

[28] E. Marcon and F. Puech, “Evaluating the geographic concen-
tration of industries using distance-based methods,” Journal of
Economic Geogmphy, vol. 3, no. 4, pp. 409-428, 2003.

[29] L. Heinrich, “Goodness-of-fit tests for the second moment
function of a stationary multidimensional poisson process,”
Statistics, vol. 22, no. 2, pp. 245-268, 1991.

[30] P. Grabarnik and S. N. Chiu, “Goodness-of-fit test for complete
spatial randomness against mixtures of regular and clustered
spatial point processes,” Biometrika, vol. 89, no. 2, pp. 411-421,
2002.

[31] A.Baddeleyand R. Turner, “Spatstat: an R package for analyzing
spatial point patterns,” Journal of Statistical Software, vol. 12, no.
6, pp. 1-42, 2005.

=
)

=
X

[32] E Goreaud and R. Pélissier, “On explicit formulas of edge
effect correction for Ripley’s K-function,” Journal of Vegetation
Science, vol. 10, no. 3, pp- 433-438,1999.

[33] R. Law, J. Illian, D. E R. P. Burslem, G. Gratzer, C. V. S.
Gunatilleke, and I. A. U. N. Gunatilleke, “Ecoogical information
from satial patterns of plants: insights from point process
theory;,” Journal of Ecology, vol. 97, no. 4, pp. 616-628, 2009.

[34] R. Pélissier and F. Goreaud, “A practical approach to the study
of spatial structure in simple cases of heterogeneous vegetation,”
Journal of Vegetation Science, vol. 12, no. 1, pp. 99-108, 2001.

[35] P.R.Aldrich, G.R. Parker, J. S. Ward, and C. H. Michler, “Spatial
dispersion of trees in an old-growth temperate hardwood forest
over 60 years of succession,” Forest Ecology and Management,
vol. 180, no. 1-3, pp. 475-491, 2003.

[36] B. Matérn, “Spatial variation,” Meddelanden fran Statens Skogs-
forskningsinstitut, vol. 49, no. 5, pp. 1-144, 1960.

[37] D.]J. Strauss, “A model for clustering,” Biometrika, vol. 62, no. 2,
pp. 467-475,1975.

[38] J. Moller and R. P. Waagepetersen, Statistical Inference and
Simulation for Spatial Point Processes, vol. 100, Chapman and
Hall, Boca Raton, Fla, USA, 2004.



Journal of ~ Journal of
Waste Management 1

The Scientific
World Journal

Journal of

Ecosystems

Submit you

International Journal of

Atmospheric Sciences

International Journal of Journal of

Biodiversity Geological Research

Journal of

Earthquakes

Scientifica

Hindawi

r manuscripts at

http://www.hindawi.com

i'(u::;_

Applied &
urnal of Environmental

ry Research Science

Advances in

Meteorology

International Journal of

Oceanography

Journal of

Climatology

Advances in
Environmental
Chemistry



