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Abstract 

Phoma stem canker, caused by Leptosphaeria maculans (anamorph Phoma lingam), is 

one of the most serious diseases of oilseed rape world-wide. However, little is known 

about the effects of cultural practices on phoma stem canker development. We carried 

out a field experiment, in 2000/2001 and 2001/2002, at Grignon Experimental Unit 

(Paris Basin, France) to assess the effects of sowing date and nitrogen availability 

during vegetative stages on phoma stem canker development on two winter oilseed rape 

cultivars. We studied eight treatments corresponding to the combination of two sowing 

dates — early (beginning of August) and typical (beginning of September) — two 

levels of nitrogen availability during vegetative stages —application of 0 or 250 kg 

N.ha-1 before the end of autumn, subsequent spring nitrogen fertilizer application being 

adjusted according to the needs of the crop — and two cultivars — Bristol (susceptible 

to phoma stem canker) and Pollen (slightly susceptible). Early sowing resulted in 

smaller crown cankers, whereas high nitrogen availability during the vegetative stage 

favoured crown canker development. Significant interactions between cultivar 

susceptibility and cultural practices were observed in the second year of the experiment. 

Crown canker development was more strongly limited by early sowing for Pollen than 

for Bristol. Similarly, high nitrogen availability during the vegetative stage increased 

crown canker development more strongly for Pollen than for Bristol. The results 

presented here should facilitate integration of the risk of phoma stem canker 

development into the choice of the sowing date and nitrogen management within the 

cropping system. 
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1. Introduction 

Phoma stem canker, or blackleg (caused by Leptosphaeria maculans (Desm.) Ces. & de 

Not.), is a major disease of oilseed rape world-wide. In France, this disease has been 

estimated to be responsible for mean yield losses of 5 to 20% (Aubertot et al., 2002). 

Chemical, genetic, biological and cultural control methods may be used to contain the 

disease. Fungicide treatments of seeds, soil or foliage are the principal means of 

controlling the disease in various regions of the world (West et al., 2001). However, 

fungicides are effective only if applied during the phoma leaf spot stage (West et al., 

1999). As fungicides are effective for only limited periods of time — generally two to 

three weeks — total control of the disease using fungicides is not possible. The use of 

resistant cultivars efficiently controls the pathogen, but such resistance may break down 

due to the selection pressure exerted on the pathogen population (Brun et al., 2002; 

Rouxel et al., 2003). Several biological control agents that might contain phoma stem 

canker development have been studied (Chakraborty et al., 1994; Tewari et al., 1997; 

Kharbanda et al., 1999; Maksymiak and Hall, 2000; Beatty and Jensen, 2002; Hysek et 

al., 2002). However, none of these agents are currently widely used by farmers as a 

means of biological control for L. maculans. Due to the limited efficiency of chemical, 

genetic and biological control methods and durability problems, cultural control 

strategies are needed for controlling the disease, in conjunction with the methods 

currently used. 

 

Appropriate residue management (e.g., burying infected debris by tillage before 

autumn) and sufficiently long crop rotations (a 4-year interval between oilseed rape 

crops is usually recommended) reduce the risk of primary inoculum production from 
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infected stubble (Alabouvette and Brunin, 1970; Kharbanda and Tewari, 1996; 

Turkington et al., 2000; West et al., 2001). Other cultural practices may also affect 

disease development, and are thus potentially useful for pathogen control. Sowing date 

is used to restrict pest development in many crops (Flint and Gouveia, 2001). In western 

Europe, concentrations of air-borne ascospores of L. maculans generally peak between 

September and December (Alabouvette and Brunin, 1970; Gladders and Musa, 1980; 

Thürwachter et al., 1999; West et al., 2002a; West et al., 2002b). The severity of the 

symptoms at harvest is highest if infection occurs soon after emergence (Brunin and 

Lacoste, 1970; Alabouvette et al., 1974; MacGee and Petrie, 1979; Hammond and 

Lewis, 1987; Sun et al., 2000). Hence, sowing date should directly influence the 

primary infection stage of the epidemic cycle of the disease. However, the relationship 

between sowing date and severity of phoma stem canker at the end of the crop cycle is 

unclear. Late sowing dates have been reported to be associated with lower levels of 

stem canker development in Australia (MacGee and Emmet, 1977) and Europe 

(Scheibert-Bohm, 1979, in Germany and the Netherlands; Lepage and Penaud, 1995, in 

France). However, early sowing has been reported to limit stem canker development in 

England (Gladders and Musa, 1980) and in western Australia (Khangura and Barbetti, 

2001). Several studies of spring canola in Canada concluded that sowing date did not 

affect phoma stem canker development because ascospores are released throughout the 

growing season (Kharbanda and Tewari, 1996). Furthermore, very early sowing (about 

one month earlier than the usual date) was reported to have no overall effect on phoma 

stem canker development in 36 trials carried out over a three-year period in France 

(Dejoux et al., 2003). However, crops sown very early generally displayed higher levels 
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of phoma stem canker than crops with a typical sowing date in situations in which a 

significant difference was identified (10 of 13 cases). 

 

The application of fertilizers, especially nitrogen, may also affect the activity of many 

pest species, to the benefit or detriment of the crop (Flint and Gouveia, 2001). Few 

studies to date have analysed the effects of nitrogen status on phoma stem canker 

development on oilseed rape crops (Kharbanda and Tewari, 1996). A Canadian study 

reported that the amount of nitrogen fertilizer applied did not affect the severity of 

crown canker on winter oilseed rape (Hall et al., 1993). Two other experiments showed 

that differences in the level of nitrogen fertilization did not affect the development of 

phoma stem canker (Sadowski et al., 1998; Söchting and Verret, 2003). However, high 

nitrogen concentrations often increase the susceptibility of plants to disease (Agrios, 

1997). In these previous experiments, nitrogen fertilizer was typically applied in spring, 

after the fungus had infected the plants. It is therefore of interest to analyse the effects 

of nitrogen availability on phoma stem canker development, not during the spring, but 

at the beginning of the vegetative stage of the crop cycle. 

 

We report here the results of field experiments investigating the effects of sowing date 

and nitrogen management within the cropping system and their interactions on phoma 

stem canker development. We used two oilseed rape cultivars to analyse possible 

interactions between known cultivar susceptibility and sowing date, and between 

cultivar susceptibility and nitrogen availability during vegetative stages. The aim of this 

study was not to compare representative agricultural practices, but to investigate the 
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potential effects of cultural practices on phoma stem canker. We deliberately introduced 

extreme cultural practices to generate broad differences in crop development. 

 

 

2. Materials and methods 

 

2.1 Field experiments 

Field experiments were carried out in 2000/2001 and 2001/2002 at Grignon (Paris 

Basin, France), on an orthic luvisol (0.67 g.g-1 silt, 0.25 g.g-1 clay and 0.08 g.g-1 sand). 

The plots used for the experiment had not been sown with oilseed rape for at least four 

years and crops were infected by the natural inoculum present in the area. The 

experimental treatments consisted of combinations of sowing dates (early sowing, D1; 

and a typical sowing date, D2), nitrogen availability during vegetative stages (low, NLow; 

and high, NHigh) and cultivar (Bristol, susceptible to phoma stem canker, B; and Pollen, 

slightly susceptible, P). The experimental design was a split-split-plot arranged in a 

randomized complete block design with three replicates. Sowing date was the main plot 

factor, cultivar the subplot factor, and nitrogen availability, the sub-subplot factor. For 

early sowing treatments, crops were sown on August 3rd 2000 and July 31st 2001. For 

typical sowing date treatments, crops were sown on August 31st 2000 and September 4th 

2001. We generated different levels of nitrogen availability by not supplying nitrogen 

during the autumn or by supplying 250 kg ammonium nitrate.ha-1. For the fertilized 

plots, nitrogen was applied in three installments: 50 kg.ha-1 after sowing, 100 kg.ha-1 

one month after sowing and 100 kg.ha-1 two months after sowing. Bristol, the cultivar 

susceptible to phoma stem canker displays early flowering and maturity, whereas 
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Pollen, which is slightly susceptible to this disease, displays semi-late flowering and 

maturity (CETIOM, 2000). Each sub-sub plot was 12 m x 15 m in size, including a 

1.5 m wide separation border to limit interactions between adjacent plots. 

 

2.2 Crop management 

The sowing rate was 117 seeds.m-2 for all treatments and both years. Each sub-sub plot 

was drip-irrigated to ensure that seedling emergence was not delayed due to lack of 

moisture. From August 1st to September 30th of both years, 25 mm of water was applied 

as soon as the balance between rainfall plus irrigation minus potential 

evapotranspiration was negative over a period of ten consecutive days. For each 

treatment, spring nitrogen fertilizer application was adjusted according to the needs of 

the crop, determined with the balance sheet method adapted for oilseed rape crops 

(Reau et al., 1997). Nitrogen was applied as ammonium nitrate. High levels of nitrogen 

availability during the vegetative stages were achieved by applying 50 kg.ha-1 of N after 

sowing (August 7th 2000 and August 1st 2001 for early sowing dates, September 4th 

2000 and September 7th 2001 for usual sowing dates), 100 kg.ha-1 one month later 

(September 4th 2000 and September 7th 2001 for early sowing dates, October 13th 2000 

and October 3rd 2001 for typical sowing dates) and 100 kg.ha-1 two months after sowing 

(October 13th 2000 and October 3rd 2001 for early sowing dates, October 30th 2000 and 

October 30th 2001 for typical sowing dates). These plots required no spring fertilization 

in either of the two study years. Plots that received no nitrogen fertilizer during the 

vegetative stages received two applications of 80 kg.ha-1 N, at intervals of about one 

month, in late winter 2000/2001 (February 20th 2001, March 27th 2001). In 2002, NLow 

plots received two applications of nitrogen fertilizer: 80 kg.ha-1 on each NLow plot 
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(March 8th 2002) plus 30 kg.ha-1 for early sowing dates (March 25th 2002) or 80 kg.ha-1 

for typical sowing dates (March 25th 2002). For crop protection, we applied a 

molluscicide (mercaptodimethur at 1.5 kg a.i.ha-1), herbicide (tebutam+clomazone at 

3 kg a.i. ha-1 and 0.1 kg a.i. ha-1 respectively), insecticide (deltametrine at 6.5 g a.i. ha-1), 

and fungicide treatments (carbendazim at 0.5 kg a.i. ha-1) controlling sclerotinia 

(Sclerotinia sclerotiorum) and light leaf spot (Pyrenopeziza brassicae) uniformly on all 

plots, according to regional CETIOM recommendations (CETIOM, 2000). We applied 

no fungicides active against phoma stem canker development or plant growth 

regulators. 

 

2.3 Climate and soil measurements 

Mean daily temperature and daily rainfall were recorded with an automatic 

meteorological station located less than 300 m from the field experiments. A regional 

climatic data set for 1971 to 1999 was used for comparison with the climate during the 

two years of the experiment. 

 

A few days before or after sowing, the amount of residual mineral N in the top 90 cm 

was measured for three soil layers: 0-30 cm, 30-60 cm, and 60-90 cm. Samples were 

taken only from NLow plots if it was not possible to take samples before nitrogen 

fertilizer application. Soil samples were obtained by mixing three separate 3x377 cm3 

cores taken from each of the three blocks, for each soil layer. Soil inorganic N content 

was determined in a KCl extract (300 ml of 1.0 mol.l-1 KCl per 150 g of fresh soil, 

shaken for half an hour, carried out in duplicate) with an autoanalyser (Skalar 

Analytical, Breda, The Netherlands), using cadmium reduction and the Griess Ilosvay 
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reaction for nitrate (Henriksen and Selmer-Olsen, 1970) and the indophenol method for 

ammonium (Verdow, 1977). 

 

2.4 Plant measurements 

Throughout the crop cycle, seven samples were taken from each sub-sub plot at 

different periods or growth stages (GS; Sylvester-Bradley, 1985): GS 1.2, second true 

leaf exposed; GS 1.6, sixth true leaf exposed; GS 1.10, tenth true leaf exposed; early 

winter (mid-December); late winter (beginning of February); GS 4.5, flowering; GS 6.3, 

most seeds green. For each set, we sampled an area of 0.85 m x 1 m in each sub-sub plot 

to determine green leaf area index (GLAI) and nitrogen nutrition index, calculated as 

the ratio of the measured mineral N concentration in the aerial parts of the plant to the 

critical nitrogen concentration (Lemaire and Gastal, 1997). The critical nitrogen 

concentration, for a given plant biomass, is the lowest nitrogen concentration in the 

aerial parts of the plant at which growth is not limited by nitrogen. This value was 

obtained from the critical curve described by Colnenne et al. (1998), except after 

flowering, when an alternative critical curve described by Jeuffroy et al. (2003) was 

used. Total nitrogen concentration was determined by a procedure adapted from the 

Dumas method (Dumas, 1831). This procedure involved the combustion of dehydrated 

and ground plant tissue at about 1800°C, the reduction of nitrogen oxides by reduced Cu 

at 600°C and N2 determination by catharometry (NA 1500 analyser, Fisons Instruments, 

Rodano, Italia). For each sample, growth stage was determined on a subsample of 10 

representative plants. We did not analyse the relationship between crown canker 

severity and yield loss because yield formation also depends on the cultural practices 

analysed. 
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2.5 Disease measurements 

The percentage of plants with at least one phoma leaf spot (incidence) was determined 

from GS 1.2 to GS 6.3, on the samples used for plant measurements. Crown canker 

severity was also determined on the samples used for plant measurements from late 

winter to GS 6.3 and on an additional sample taken at crop maturity (GS 6.6: most seeds 

dark brown). Six severity classes were used to grade crown cankers: 1, healthy plant, no 

visible lesions; 2, weakly developed canker; 3, canker developed on less than half of the 

crown section; 4, canker developed on more than half of the crown circumference; 5, 

canker developed over almost all the crown section; 6, section with no living tissue, 

plant lodged or broken at the crown during sampling. The minimum sample size was 80 

plants per sub-sub plot. A disease index (DI) with values from 0 for healthy plants to 9 

for plants totally lodged because of the disease was then used to summarize the 

observations (Aubertot et al., in press): 
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where ni is the number of plants in class i. 

 

We determined the concentration of L. maculans air-borne ascospores daily, using a 

spore trap (7-day recording volumetric spore trap, Burkard Manufacturing Company, 

Rickmansworth, UK) placed in the middle of the experimental plot. This device is 

similar to the trap described by Hirst (1952). The ascospores trapped within a 24-hour 

period were counted under a microscope and the ascospore concentration was calculated 
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as a function of throughput at the orifice (10 l.min-1). This device was used from August 

28th 2000 until June 25th 2001 and from August 2nd 2001 until July 17th 2002. 

 

2.6 Statistical analysis 

We used SAS Release 6.12 for Windows (SAS Institute Inc., 1989) for statistical 

analysis. We performed split-split-plot analyses of variance (Little and Hills, 1978), 

using the GLM procedure. Separate analyses were performed individually for each of 

the sample sets taken at a given phenological stage or in a given period. Probability 

values are presented directly in the text to support our interpretations. For each analysis 

of variance, we checked homoscedasticity, by Levene’s test (confidence level of 0.95), 

and the normality of the residuals by the Shapiro-Wilks test (confidence level of 0.95). 

Logarithmic transformations were carried out before analysis if Levene’s test revealed 

heteroscedasticity. Arcsine transformations were applied to percentage data containing 

both values smaller than 30% and greater than 70% (Gomez and Gomez 1984). 

 

3. Results 

The autumn was mild and wet in the first year of the experiment (2000/2001, Figure 1). 

Total cumulative rainfall was 274 mm from October to December 2000, whereas the 29-

year mean for these months was 159 mm. In 2001, there was a wet period from March 

to April, followed by a dry period from May to June. The autumn was mild, with typical 

levels of rainfall in the second year of experiment. However, temperatures in December 

2001 were below the 29-year mean. For that month, mean daily temperature remained 

below 0°C for four consecutive days (data not shown). In 2002, there was a wet period 

from February to March, followed by a dry period in April. 
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Soil nitrogen content at sowing was between 20 and 50 kg.ha-1 at depths of 0-90 cm for 

early-sown crops in both years (Table 1). Soil nitrogen content was higher in plots sown 

at the usual date (45-72 kg.ha-1) because of summer soil N mineralization. In late 

winter, differences were observed in soil nitrogen content, due to differences in nitrogen 

fertilization during the autumn. As expected, soil mineral nitrogen content was higher in 

plots to which fertilizer was applied in autumn than in NLow plots in late winter. Early 

sowing improved the nitrogen absorption of the oilseed rape crop (data not shown), as 

previously reported by Dejoux et al. (2003). 

 

Differences in nitrogen availability during the vegetative stages led to differences in leaf 

development (Figure 2). Green leaf area index was significantly higher for NHigh plots 

from sowing to spring re-growth than for NLow plots, for both cultivars and sowing dates 

in both years (P < 0.01 in 2000/2001 and in 2001/2002 for the maximum GLAI from 

sowing to spring re-growth). Differences between NHigh and NLow plots were greatly 

reduced by late winter 2001/2002, because of leaf fall, whereas the differences remained 

large during the winter of 2000/2001. The lower temperatures recorded during the 

winter of 2001/2002 were associated with the observed differences in leaf fall between 

the two years of the experiment. Spring fertilization of the NLow plots decreased the 

differences in GLAI caused by differences in nitrogen availability during the vegetative 

stage, although the difference between NHigh and NLow plots was still significant (at 

flowering; P < 0.01 for both years of experiment). On the NLow plots, for both years and 

both cultivars, sowing at the usual date led to a greater GLAI at the third sampling than 

early sowing (P < 0.01 in 2000 and in 2001, for the sowing date x nitrogen availability 
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interaction). In both years, differences in GLAI due to sowing date were reduced in 

early winter. The differences between the GLAI values of the two cultivars were limited 

and, in most cases, were not significant for the seven sampling sets. 

 

Differences in nitrogen nutrition index (NNI) were also observed between NHigh and 

NLow plots, from the two-leaf stage until late winter (P < 0.01, Figure 3). In NHigh plots, 

NNI was generally 1 or more during the entire crop cycle, indicating that nitrogen was 

not limiting. In contrast, NNI was smaller than 1 for all NLow plots before flowering, and 

was generally between 0.5 and 0.8 in both years. On NLow plots, sowing at the usual 

time generally led to slightly greater NNI (P < 0.054 for the first three stages sampled in 

2000 and 2001). These differences disappeared in early winter (P = 0.10 in 2000 and 

P = 0.15 in 2001). No difference in NNI was observed between the two cultivars 

analysed (P = 0.15 - 0.71 for the entire sample set in both years, except for flowering in 

2002, when P < 0.01). As for GLAI, differences in NNI during the vegetative stage 

were reduced by spring fertilization of the NLow plots in both years (for the effect of the 

nitrogen availability during the vegetative stages, P = 0.55 in 2001 and P = 0.61 in 

2002, at flowering). 

 

We observed differences between years in terms of changes in air-borne ascospore 

concentration over time (Figure 4). Two peaks were observed in 2000, on September 

20th and October 20th. In autumn 2001, a major peak was observed on November 7th. 

The number of days with captured ascospores and the total number of ascospores 

detected were higher during autumn 2000 than during autumn 2001. The first days with 

a mean daily ascospore concentration greater than 1 spore per m3 (i.e., with more than 2 
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ascospores actually observed) were September 7th 2000 and September 20th 2001. On 

these dates, plots sown at D2 were at the cotyledon growth stage (GS 1.0) and the one-

leaf growth stage (GS 1.1), whereas plots sown at D1 were at the six-leaf (GS 1.6) and 

eight-leaf growth stages (GS 1.8), in 2000 and 2001, respectively. 

 

In both years, the maximum phoma leaf spot incidence was high for the NHigh plots, 

regardless of sowing date, and for the NLow plots sown at D2 (73-97%, Table 2), 

regardless of cultivar. Maximum incidence was lower on NLow plots sown at D1 than on 

the other plots (29-50%). In 2001, the incidence was very low until late winter on NLow 

plots sown at D1 (7% for cultivar B, 9% for cultivar P). For NLow plots sown at D1, 

disease incidence increased in late winter, due to the increased concentrations of air-

borne ascospores (Figure 4). In both years, phoma leaf spot incidence decreased 

significantly at flowering (incidence range: 0 to 35%) and no phoma leaf spot was 

observed at crop maturity. Cultivar susceptibility to phoma stem canker had no 

significant effect on the incidence of phoma leaf spot. In 2000, the first phoma leaf 

spots were observed on September 3rd. Thus, infection must have occurred before the 

spore trap was set up on August 28th 2000, because leaf lesions do not develop until 

several days after infection (West et al., 2001). 

 

The cultural practices analysed in this experiment led to a wide range of phoma crown 

canker severity in both years (Figure 5). Low levels of canker development were 

already visible in late winter in 2002. However, crown cankers really started to develop 

after flowering in both years. The year 2001/2002 was more favourable for disease 

development (DI of 2.2-8.8, at crop maturity) than 2000/2001 (DI of 1.4-5.9, at crop 
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maturity). In both years, DI was higher for NHigh plots than for NLow plots (P < 0.01 in 

2001 and 2002, at crop maturity). Disease indices were higher for the usual sowing date 

than for early sowing (P < 0.01 in 2001 and P = 2.9x10-2 in 2002, at crop maturity). The 

expected difference in disease susceptibility between the cultivars was observed in 2002 

(P < 0.01 at crop maturity) but not in 2001 (P = 0.79, at crop maturity). The only 

significant interaction observed in 2000/2001 was that between sowing date and 

nitrogen availability before late winter (P < 0.01); nitrogen had a greater effect on crops 

sown at the usual date than for crops sown early. In 2001/2002, there was a significant 

interaction between cultivar and sowing date (P = 1.2x10-2, at crop maturity), and 

between cultivar and nitrogen availability (P < 0.01, at crop maturity). The cultivar 

Pollen was more sensitive to cultural practices than the cultivar Bristol in the second 

year of the experiment. 

 

4. Discussion 

The different cultural practices led to differences in crop development, which in turn 

resulted in a wide range of phoma crown canker development in the two years. The 

sooner the infection occurs after emergence, the more severe are the symptoms at 

harvest. Thus, for both years of the experiment, early sowing shifted the period of 

maximum susceptibility to infection and the time at which the first significant release of 

ascospores was observed. This clearly reduced crown canker severity in crops sown 

earlier than usual. This finding is consistent with the results of some other studies 

(Gladders and Musa, 1980; Khangura and Barbetti, 2001), but conflicts with other 

studies in which sowing date was found to have no effect on phoma stem canker 

development (Kharbanda and Tewari, 1996; Dejoux et al., 2003) or late sowing was 
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found to restrict phoma development (MacGee and Emmet, 1977; Scheibert-Bohm, 

1979; Lepage and Penaud, 1995). Other elements must be responsible for the reported 

variability of the effect of sowing date on phoma development. 

The pattern of ascospore release clearly varies between regions and years, and 

contributes considerably to the variability observed. Factors affecting crop development 

may also influence the effect of sowing date on disease development. For instance, for a 

given pattern of ascospore concentration, the effect of early sowing depends on the 

physical conditions controlling emergence (drought, presence of a crust, sowing 

depth, etc). Thus, published results might not have been as contradictory as they initially 

appear if information other than sowing date and symptom severity had been taken into 

account (e.g., ascospore release pattern, date of emergence). The results presented here 

are consistent with the notion that the risk of severe crown canker is increased if 

infection occurs soon after emergence. A frequency analysis of first ascospore release 

pattern is required to elucidate the effect of sowing date on phoma epidemics. In such an 

analysis, the effect of sowing date could be represented in a probabilistic manner, and 

could be used to take into account the risk of severe phoma epidemics when choosing 

the sowing date. 

 

Nitrogen availability during vegetative stages greatly influenced phoma stem canker 

development. This finding conflicts with published results suggesting that nitrogen 

fertilization does not affect the percentage of stems of winter oilseed rape infected by 

L. maculans (Hall et al., 1993; Sadowski et al., 1998; Söchting and Verret, 2003). 

However, in the reported experiments, nitrogen fertilizer was applied in spring. Thus, 

our results may not conflict with those of previous studies if the timing of nitrogen 
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fertilization is taken into account. Several mechanisms may account for the effect of 

crop nitrogen status on phoma stem canker development. Higher nitrogen availability 

during the early growth stages results in larger leaves, which are more likely to come 

into contact with spores. When such leaves fall, they leave larger scars, which may act 

as an important point of entry for secondary inoculum (Pérès et al., 1996). Oilseed rape 

crops with high nitrogen contents are also more sensitive to frost than those with low 

nitrogen contents (Pellet et al., 2002). They may therefore present a larger number of 

frost wounds, and wounding is known to increase the incidence and severity of phoma 

stem canker (Hall, 1992). Furthermore, Snoeijers et al. (2000) speculated that a lack of 

nitrogen within the plant might result in the induction of several pathogenicity, 

avirulence/virulence genes. Thus, high nitrogen availability during vegetative stages 

may limit the transcription of induced pathogen genes by modifying the nutritional 

status of the plant. Finally, more extensive foliage development may modify the 

microclimate, increasing the rate of pathogen spore germination. Our experimental 

design precluded analysis of the respective contributions of these mechanisms. 

 

The expected difference in disease susceptibility between cultivars was observed in 

2001/2002, but not in 2000/2001. The reasons responsible for this difference in the 

results obtained in the two years are unknown. However, one key finding of this study 

was the interaction between cultivar susceptibility and cultural practices. In 2001/2002, 

the slightly susceptible cultivar Pollen was more sensitive to cultural practices (sowing 

date and nitrogen availability during vegetative stages) than the susceptible cultivar 

Bristol. Thus, the level of cultivar tolerance should perhaps be seen as only a rough 

indicator of phoma stem canker risk. Instead, the combination of cultural practices and 
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cultivar should be taken into account when assessing the risk of severe phoma stem 

canker epidemics. The existence of such an interaction may make it more difficult for 

breeders to assess the susceptibility of cultivars to phoma stem canker. However, the 

interaction observed in the second year of experiment still requires confirmation from 

the analysis of additional data. 

 

Plots with severe crown cankers had high incidences of phoma leaf spot during autumn, 

but high phoma leaf spot incidence resulted in a wide range of severity of crown 

cankers. There was therefore no evidence of a consistent relationship between phoma 

leaf spot incidence during autumn and severity of crown canker at crop maturity. This is 

consistent with previous reports of a poor correlation between the incidences of phoma 

leaf spots and basal stem cankers (West et al., 2001). Further studies are required to 

analyse the pathway between primary infection and stem canker development. 

 

In this study, some of the cultural practices were deliberately taken to extremes that are 

rarely applied in practice. In the Centre region of France, the 20th and 80th percentiles 

for sowing date were August 22nd and August 29th, respectively, in 2000 (CETIOM, 

2002). We chose to study very early sowing dates to maximize the separation between 

the period of highest crop susceptibility and the initial flush of ascospores. Furthermore, 

only 5% of commercial fields are fertilized with mineral nitrogen in autumn (CETIOM, 

2002). However, it has been reported that oilseed rape can absorb more than 250 kg 

N.ha-1 in early winter (Dejoux et al., 2003), a quantity consistent with the levels of 

nitrogen applied to the NHigh plots in this study. High levels of mineral nitrogen 

fertilization in autumn were used to simulate levels of nitrogen availability that might 
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result from the application of organic manure in summer or over-fertilization of the 

preceding crop. 

 

The use of different cultural practices made it possible to identify significant 

interactions between crop development and phoma stem canker development. The 

results presented provide insight into the effects of cultural practices on phoma stem 

canker development, but the interaction between crop management and cultivar in 

phoma stem canker development has to be substantiated with additional testing. Our 

results should make it possible to define cultural control strategies for containing the 

pathogenic agent to integrate the risk of phoma epidemics into proposals for innovative 

cultural practices for oilseed rape. However, although phoma stem canker is one of the 

major diseases of oilseed rape, effective recommendations for cultural control must also 

take into account other constraints, such as the control of other important pests, 

economic and environmental objectives (e.g., optimization of gross margin, reduction of 

pesticide use). The integration of these multiple constraints will require the development 

of an integrated model representing the effects of cultural practices on yield formation, 

and the yield loss caused by the main pests of oilseed rape. The results presented should 

provide some of the information required to develop such a model for the formulation of 

integrated pest management strategies for oilseed rape, combining cultural, genetic and, 

as a last resort, chemical control methods. 
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Table 1. Total soil nitrogen content (kg.ha-1, at 0-90 cm depth) at sowing and in 

late winter as a function of sowing date and nitrogen availability during vegetative 

stages. 95% confidence intervals are indicated in brackets. 

 

 At sowing1  In late winter2 

Sowing date3 2000/2001 2001/2002 N availability4 2000/2001 2001/2002 

 

D1 

 

19.7 (17.3) 

 

50.4 (33.2) 
NLow 12.1 (0.9) 16.8 (1.2) 

NHigh 16.4 (3.1) 107.8 (17.4) 

 

D2 

 

44.6 (16.6) 

 

72.0 (33.1) 
NLow 10.3 (1.4) 19.6 (10.0) 

NHigh 86.8 (38.4) 181.1 (70.8) 

1 Soil was sampled on August 2nd 2000 and August 1st 2001 for D1; and on September 

19th 2000 and September 5th 2001 for D2. 

2 Soil was sampled on January 31st 2001 and February 4th 2002. 

3 D1: early sowing dates (August 3rd 2000 and July 31st 2001); D2: usual sowing dates 

(August 31st 2000 and September 4th 2001). 

4 Nitrogen availability during vegetative stages. NLow: no fertiliser applied during 

autumn; NHigh: 250 kg.ha-1 N was applied in three installments, within two months of 

sowing. 



29 

Table 2. Changes over time in the observed percentage of plants with at least one 

phoma leaf spot (incidence) in 2000/2001 and in 2001/2002. D1: early sowing date; 

D2: usual sowing date; B: cultivar Bristol, susceptible to phoma stem canker; P: 

cultivar Pollen, slightly susceptible; NHigh: high nitrogen availability during 

vegetative stages; NLow: low nitrogen availability during vegetative stages. 

Numbers in brackets are the lower and upper limits of the 95% confidence 

intervals (Agresti-Coull, 1998). 

  Growth stage1 or period 

Season Treatment GS 1.22 GS 1.63 GS 1.104 Early winter5 Late winter6 GS 4.57 GS 6.38 

 D1BNHigh 0 (0, 13) 37 (22, 55) 60 (42, 75) 83 (66, 93) 57 (39, 73) 17 (7, 34) 0 (0, 13) 

 D1PNHigh 0 (0, 13) 40 (25, 58) 63 (45, 78) 80 (62, 91) 40 (25, 58) 0 (0, 13) 0 (0, 13) 

 D2BNHigh 0 (0, 13) 90 (74, 97) 97 (82, 100) 87 (70, 95) 50 (33, 67) 0 (0, 13) 0 (0, 13) 

2000/ D2PNHigh 3 (0, 18) 83 (66, 93) 93 (78, 99) 70 (52, 83) 40 (25, 58) 0 (0, 13) 0 (0, 13) 

2001 D1BNLow 0 (0, 13) 37 (22, 55) 7 (1, 22) 0 (0, 13) 7 (1, 22) 0 (0, 13) 0 (0, 13) 

 D1PNLow 0 (0, 13) 17 (7, 34) 7 (1, 22) 37 (22, 55) 43 (27, 61) 0 (0, 13) 0 (0, 13) 

 D2BNLow 10 (3, 26) 93 (78, 99) 40 (25, 58) 13 (5, 30) 10 (3, 26) 3 (0, 18) 0 (0, 13) 

 D2PNLow 10 (3, 26) 80 (62, 91) 43 (27, 61) 13 (5, 30) 13 (5, 30) 0 (0, 13) 0 (0, 13) 

 D1BNHigh 0 (0, 2) 0 (0, 2) 81 (74, 86) 85 (79, 90) 80 (71, 86) 35 (25, 46) 0 (0, 13) 

 D1PNHigh 0 (0, 2) 0 (0, 2) 51 (44, 58) 73 (66, 79) 31 (25, 39) 25 (19, 33) 0 (0, 9) 

 D2BNHigh 0 (0, 2) 64 (58, 70) 91 (86, 94) 75 (69, 81) 54 (47, 62) 30 (23, 39) 0 (0, 13) 

2001/ D2PNHigh 0 (0, 2) 82 (77, 86) 80 (75, 85) 81 (75, 85) 22 (17, 28) 24 (17, 31) 0 (0, 13) 

2002 D1BNLow 0 (0, 2) 0 (0, 2) 0 (0, 2) 7 (5, 11) 29 (24, 35) 17 (13, 22) 0 (0, 13) 

 D1PNLow 0 (0, 2) 0 (0, 2) 6 (4, 10) 9 (6, 13) 50 (44, 56) 4 (2, 7) 0 (0, 13) 

 D2BNLow 0 (0, 2) 55 (49, 61) 95 (91, 97) 65 (59, 71) 32 (27, 38) 8 (5, 13) 0 (0, 13) 

 D2PNLow 0 (0, 2) 82 (78, 86) 92 (88, 95) 69 (63, 74) 15 (11, 19) 3 (1, 6) 0 (0, 13) 
1 Sylvester-Bradley (1985): GS 1.2, second true leaf exposed; GS 1.6, sixth true leaf 

exposed; GS 1.10, tenth true leaf exposed; GS 4.5, flowering; GS 6.3, most seeds green. 

2 August 15st 2000 and August 15st 2001 for D1; September 18th 2000 and September 

27th 2001 for D2. 

3 September 3rd 2000 and August 4th 2001 for D1; October 2nd 2000 and October 18th 

2001 for D2. 



30 

4 October 24th 2000 and November 6th 2001 for D1; November 6th 2000 and November 

19th 2001 for D2. 

5 December 11th 2000 and December 13th 2001. 

6 February 12th 2000 and February 4th 2001. 

7 April 2nd 2000 and April 2nd 2001 for cultivar Bristol; April 9th 2000 and April 11th 

2001 for cultivar Pollen. 

8 May 14th 2000 and May 13th 2001 for cultivar Bristol; May 21st 2000 and May 17th 

2001 for cultivar Pollen. 
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Figure 1. Mean monthly temperature (a) and cumulated rainfall (b) for the months of 

the year.    29-year average (1971/1999);    2000/2001;    2001/2002. 

Figure 2. Changes in green leaf area index (GLAI) over time in 2000/2001 (a) and 

2001/2002 (b). Error bars indicate 95% confidence intervals for the means of three 

replicates. � D1BNHigh; 

� D1PNHigh;  D2BNHigh; � D2PNHigh; � D1BNLow; � D1PNLow; � D2BNLow; � 

D2PNLow. 

D1: early sowing date; D2: usual sowing date; B: cultivar Bristol, susceptible to phoma 

stem canker; P: cultivar Pollen, slightly susceptible; NHigh: high nitrogen availability 

during vegetative stages; NLow: low nitrogen availability during vegetative stages. 

Figure 3. Changes in nitrogen nutrition index (NNI) over time in 2000/2001 (a) and 

2001/2002 (b). Error bars indicate 95% confidence intervals for the means of three 

replicates. � D1BNHigh; 

� D1PNHigh;  D2BNHigh; � D2PNHigh; � D1BNLow; � D1PNLow; � D2BNLow; � 

D2PNLow. 

D1: early sowing date; D2: usual sowing date; B: cultivar Bristol, susceptible to phoma 

stem canker; P: cultivar Pollen, slightly susceptible; NHigh: high nitrogen availability 

during vegetative stages; NLow: low nitrogen availability during vegetative stages. 

Figure 4. Changes in mean daily concentration of air-borne ascospores of 

Leptosphaeria maculans over time in 2000/2001 (a) and 2001/2002 (b). 

Figure 5. Changes over time in the disease index for phoma crown canker in 2000/2001 

(a) and 2001/2002 (b). Error bars indicate 95% confidence intervals for the means of 

three replicates. 

� D1BNHigh; � D1PNHigh;  D2BNHigh; � D2PNHigh; � D1BNLow; � D1PNLow; � 
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D2BNLow; 

� D2PNLow. D1: early sowing date; D2: usual sowing date; B: cultivar Bristol, 

susceptible to phoma stem canker; P: cultivar Pollen, slightly susceptible; NHigh: high 

nitrogen availability during vegetative stages; NLow: low nitrogen availability during 

vegetative stages. 



33 

0

2

4

6

8

10

12

14

16

18

20

A
ug

us
t

S
ep

te
m

be
r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

Feb
ru

ar
y

M
ar

ch
A
pr

il
M

ay
Ju

ne
Ju

ly

M
e

a
n

 t
e

m
p

e
ra

tu
re

 (
°C

)
a

 
 

0

20

40

60

80

100

120

140

A
ug

us
t

S
ep

te
m

be
r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

Feb
ru

ar
y

M
ar

ch
A
pr

il
M

ay
Ju

ne
Ju

ly

C
u

m
u

la
te

d
 r

a
in

fa
ll

 (
m

m
)

b

 
 

 

 

 

 

 

 

 

 

Figure 1. 



34 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1/8/00 30/9/00 29/11/00 28/1/01 29/3/01 28/5/01

G
re

e
n

 l
e

a
f 

a
re

a
 i
n

d
e

x
 (

m
²/

m
²)

   a

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1/8/01 30/9/01 29/11/01 28/1/02 29/3/02 28/5/02

L
e

a
f 

A
re

a
 I
n

d
e

x
 (

m
²/

m
²)

   b

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 

 



35 

0.0

0.4

0.8

1.2

1.6

2.0

1/8/00 30/9/00 29/11/00 28/1/01 29/3/01 28/5/01

N
it

ro
g

e
n

 N
u

tr
it

io
n

 I
n

d
e

x

   a

0.0

0.4

0.8

1.2

1.6

2.0

1/8/01 30/9/01 29/11/01 28/1/02 29/3/02 28/5/02

Nit
ro
ge

Nu
trit

de

   b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 



36 

01/08/00  01/10/00  01/12/00  01/02/01  01/04/01  01/06/01  

A
s
c
o
s
p
o

re
s
 o

f 
L
. 

m
a

c
u
la

n
s
 p

e
r 

m
3

0

10

20

30

40

50

60

120

130

a

01/08/01  01/10/01  01/12/01  01/02/02  01/04/02  01/06/02  

0

10

20

30

40

50

60

120

130

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 



37 

0

1

2

3

4

5

6

7

8

9

1/2/01 3/3/01 2/4/01 2/5/01 1/6/01 1/7/01D
is

e
a
s
e

 i
n

d
e

x
 (

0
-9

) 
fo

r 
p

h
o

m
a
 s

te
m

 c
a
n

k
e

r

   a

0

1

2

3

4

5

6

7

8

9

1/2/02 3/3/02 2/4/02 2/5/02 1/6/02 1/7/02

   b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 



38 

 


