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Abstract

Fusariumhead blight is an ancient disease and is very camim@ughout the world. In this
article, we review current knowledge concerning #ffects of cultural practices on the
development of head blight and the production gin® in the field. The qualitative effects of
these practices on the severity of the diseas@atit¥ production of toxins are in the process
of being elucidated but, in many cases, detailediss have not yet been carried out or
conflicting results have been obtained. Howeveshduld be noted that these effects have not
yet been quantified. Three different cultural picet are today considered to be of prime
importance for combating this disease and the mtimlu of mycotoxins: deep tillage, the
choice of the preceding crop in the rotation arelc¢hoice of appropriate cultivar, as varietal
effects exist.
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Introduction

Head blight is a fungal disease affecting many bgrain plant species worldwide [1-10].
Affected wheat grains are small, light (the kerreldegraded), wrinkled and sometimes
covered with a white or pink down. Rings or ovaliss with brown edges and clear centres
may be visible on the back of the grain [1,2,6,B]-dnd on the external surface of the glumes
(Figure 1). Head blight results from the developtmeh a complex of two genera of
pathogenic fungiMicrodochiumand Fusarium[8,14-22].Microdochiumconsists of a single
species,M. nivale, made up of two subspecieBl. nivale nivaleand M. nivale majus
Fusariumconsists of five main specieg.(graminearum, F. culmorum, F. avenaceum, F.
poaeandF. triticum), with several strains per species. The most comaofithese species are
F. graminearumandF. culmorum[2,4,5,23-27], which are also the most pathogeeiducing

the size of the grains and the final yield [24,28].

The consequences of head blight contamination

This disease was first described at the end ofl@ta Century in England [29] and has
economic consequences. Yield losses (flower abugrtdecrease in grain weight, highly
damaged grains eliminated during threshing) of whesy reach 15 stooks (180 sheaths) per
hectare in cases of severe disease (according tiethnical organisation dealing with cereals
in France), or 50-60% [1,6,7,30] about once evbrgd to five years [6,16]. In 2000, the year
with the highest levels of disease in the lastytears, up to 100% of ears were affected on
certain French plots [31]. There is a non-linedatrenship between the percentage of ears
attacked byM. nivale and thousand-grain weight [19,32]. Head blighb altecreases the
nutritive and technological quality of the graimdegradation of proteins, baking quality,

nutritive value etc.).

Since the 1990's, interest in food health and pdfas increased. For cereal products, one of
the most important elements of alimentary riskhis possibility of mycotoxin accumulation
on or in the grains [33-35]. Mycotoxins are the carcts of fungal secondary metabolism
[34,36], which occurs when growth stops altogetbieslows markedly [37]. These toxins
result from adaptation of the growth of the fungoistressful situations [37]. Head blight is
the principal means by which mycotoxins develop tie grains before harvest. The
mycotoxins produced in crops suffering from headHtlare produced by fungi of the genus
Fusarium Fungi of the genuMlicrodochiumare thought not to produce toxins [8]. Levels of
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the mycotoxins produced yusariumcannot be reduced after harvest by means of ctdssi
transformation procedures [38]. These toxins arengbally and thermally stable [39,40].
They may therefore be found in the raw materiahifgg) and in transformed products (flour,

bread) or in products from animals fed with contaaed grain (meat, milk, eggs) [35].

Mycotoxins cause two types of problem. They mayegate technological problems, such as
negative effects on malting for beer (inhibition @fizyme synthesis) or on fermentation
(inhibition of yeast growth), or even on the protime of high-quality bread [38]. Indee#,
graminearummodifies a protease that acts on gluten. Damaghisoenzyme prevents the
dough from retaining the gas produced during fetatean, resulting in heavier, less
voluminous bread. FurthermorE, graminearumalso destroys starch grains, protein stores
and cell walls [6,41,42].

Mycotoxins may also cause poisoning incidents pttecipal symptoms of which are nausea,
lethargy, fatty and cancerous infiltrations andsiloly even death [38,43]. Six main families
of mycotoxins have been studied to date: aflatoxiBs, B2 and M1), ochratoxin A,
trichothecenes (T2 toxin, deoxynivalenol etc.), raBmone and fumonisingrusarium
produces toxins of the last three groups, which atéack the liver, the kidneys, the nervous
system, the circulatory system, the endocrine mystbe skin, the digestive tract and the
blood [44]. These toxins are thought to be highfrcmogenic, although this assertion
remains unproven in most cases. However, T2 toagbdeen shown to be carcinogenic [44].
The absorption of trichothecenes has resultedemptiisoning of animals and humans in the
United States, Canada, the Soviet Union (as itatdke time) and Japan [39]. The massive
absorption of T2 toxin was responsible for toxigrn&ntary aleukia in several regions of the
USSR between 1942 and 1947 [34,39]. Pigs are timeatsmost reactive to deoxynivalenol,
whereas poultry seem to be particularly resistafiects on humans have been observed after
the absorption of 300 to 8000 upg/kg deoxynivaleimolindia [8]. This led the public
authorities to establish norms fixing maximum deatxglenol levels in food destined for
human consumption. The European Commission hasopeopsetting limits of 750 pg/kg
(750 ppb) in cereals and 500 pg/kg in cereal-baseducts such as flour. A major problem in
trichothecene toxicology is the current lack of wtedge concerning the risk of food
contamination by several of these toxins at the esaime, asFusarium can produce a

multitude of toxins simultaneously [34].
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Factorstriggering attacks

The climate is known to have an effect, and is saithe the principal factor affecting the
development of head blight on oat in Norway [45]irhidity determines the severity and
intensity of the disease whereas precipitation ttal radiation determine inoculum levels
(number of spores per ear) [46]. The climate pkaysle at all stages of development of the
fungus [47-49]. The climate during winter affedige survival of the fungus on crop residues:
during mild periods of the winter, the fungus ipahble of sporulating on the cereal stubble
debris [48]. In spring, the climate determines tipe and quality of spores produced,
together with the date of their dispersal and thhus intensity of the disease. Indeed,
coincidence in the dates of spore dispersal angl ftmavering, marking the start of the critical
phase of infection for plants [2,6,16,50], is oinpg importance in determining the intensity
of the attack. In summer, together with the virgkertharacteristics of the fungal strain and
the intrinsic resistance of the plant, climate colstcompetition between pathogen species,
thereby controlling the rate of mycelium growthtle plant [47]. The climate may also affect
the production of fungal toxins in the field [2,54]. The effects of climate are such that the
levels of deoxynivalenol recorded on diseased chopise field and in the glasshouse are not
correlated [49]. The effects of climate are of @auuncontrollable, but also difficult to predict
due to their complexity.

However, in any given year, two neighbouring plotsy display different levels of infection
[19,55]. It must therefore be possible, to somemxtto control the production of mycotoxins
by modifying the cropping system.

The literature review below aims to identify and etucidate the relationships linking
cropping systems to grain contamination Bysarium, Microdochiumor to mycotoxin

production byFusarium

1- Epidemiological study of the disease
1-1. Impact of climate on the species complex
The species of fungi making up the pathogenic cempésponsible for head blight may
differ from year to year and from one region to taeo, particularly as a function of climate
[6,11,56] and wheat variety [56,57]. Indeed, cliempartly controls competition between the
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various species. Thus, at flowering, the develogneéMicrodochiumis favoured by lower
temperatures [6,58] and rainfall [59], whereas tb&tFusarium is favoured by high
temperatures [58] and storms [58]. graminearumis generally the predominafusarium

species in warmer regions, whereas the predomispaties in cooler regions afe

culmorum [6,16,28,60],F. avenaceuni6] and M. nivale [6,16]. Furthermore, in spring
(before ear emergence), drought favours the dewedap of symptoms ofF. graminearum
and F. culmoruminfection at the base of the plant, at the expesfs@ther species of

Fusarium[59].

1-2. Sources of inoculum

Several reservoirs of the parasite complex resptn&r head blight are known. The primary
reservoir of inoculum is debris from the previouspc[2,61]. All species oFusariumand
Microdochiumcan survive as saprophytes [6]. However, the ggh®s survive longer on
residues that do not degrade easily, such as steesrj2].

Other sources of inoculum include numerous plardtdioThese may be cultivated plants
and/or weeds, such as grasses and evergreen w@eddowever, the roles of weeds,
inoculum source (site at which the fungi developd aupports for survival have not yet been
determined [62]. Seeds are the other major souiréeogulum, making it possible for the
disease to begin in autumn in the case of graimsactinated with mycelium [14,16]. The
further into the grain the mycelium has penetratée, lower is the chance of the grain
germinating. The soil may also be contaminated][1S?il-borne infections take hold less
rapidly than seed-borne infections, resulting &daaffecting essentially the collar and the
upper parts of the roots [2,14]. Soil humidity, tpadarly during winter, decreases the

pathogen survival rate [2].

The flag leaf is the principal site of spore praitut and source of ear infection in the plant
[32].

1-3. Production and maturation of inoculum

During the winter, the fungi survive as chlamydagso mycelium or propagules [2,6].

Sporulation, which involves the production of vamsotypes of spore, occurs during mild

periods [48]. Four types of asexual inoculum maypbeduced, depending on the species

concerned: macroconidia, microconidia, chlamydosp@nd hyphal fragments, the size and
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form of which depend on the species of pathogeh [B3% macroconidia df. graminearum
may contain one to seven septa — most frequentgetto seven — and measure 20 to 105
pum in length (mostly 35-62 um), and 2 to 56 um idtiwv[2]. This type of inoculum may be
available during the entire crop cycle [16]. Sexs@dres, known as ascospores, may also be
produced by reproductive organs called perithe@iay three of the species most frequently
responsible for head blight appear to be capab@aducing ascospores in the natural state:
M. nivale, F. graminearumand F. avenaceum[6,16,64]. These three species produce
ascospores that are similar in size and form. Tieyerally have three septa and measure
about 17.5 — 26 um x 3.5 — 5 um [2]. They take rgldime to mature and therefore
contamination cannot occur before ear emergencé [@éron reported thaM. nivale
produces ascospores from May onwards in Francetlzaid=. graminearumproduces its

ascospores later in the year.

In the laboratory, the optimal environmental coiodis for production of the principal forms
of inoculum — macroconidia and ascospores — depenthe species and the environment.
These results probably cannot be directly trangpégenatural conditions. Table 1 sums up

the principal results reported in the literature.

The maturation of the inoculum has been studielbss detail and depends on interactions
between environmental factors, both in the laboyaémd in the field. The maturation of the
inoculum is thought to be hindered by drought aaldl gn autumn and winter [65]. In the
laboratory, perithecia have been reported to matuigx to nine days [66], or nine to ten
days [2] after their initiation in ideal conditians contrast, perithecium maturation takes two
to three weeks in the field whereas conidiospoagshe produced in large quantities within a
few hours [59]. According to another study, macrod@ reach maturity in three weeks in
the field [67]. The rate of maturation of peritreedepends on light [66,68].

1-4. Dispersal of the inoculum

The inoculum is dispersed by various animal vectblises Siteroptes graminujrtransport
F. poaespores [6]. Insects are parasitised by certainisp@fFusarium F. episphaerigSN.
and H) in particular [63]F. avenaceum, F. culmoruand F. poaehave been isolated on
various insects includinlylusca domesticéhousefly),Hypera punctatgclover leaf weevil)

andMelanoplus bivittatu$69].
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The possibility of inoculum dispersal by the systemoute has long been debated; after
cutting the peduncle of a wheat ear into segmeAtanasoff (1920)[1] observedr.
graminearumin the segments close to the ear but not in thiuse ¢o the flag leaf. Following
inoculation of the base of the wheat stem, only@%lants display colonisation beyond the
second node and no fungus is detected beyondfthenide [70]. In another study [71], the
tops of plants produced from seeds inoculated Witmivale presented similar numbers of
perithecia to those of plants grown from healthgdse even though the plants grown from
contaminated seeds had more perithecia at thedbaise stem. This finding confirms the lack
of relationship between head blight and foot ro¢ ¢mFusarium[6,16]. To date, these two
infections have been considered to be essentiadlgpendent [1,16]. However, it should be
noted that the presence of the parasite at the dfade stem (below the second node) may
disturb the water supply to the ear sufficientlyctuse shrivelling at the slightest increase in
temperature [14]. Shrivelling of part of the earoise of the symptoms of head blight. A
confusion of symptoms is possible: in some cadadvdlling of the ears may be due to the
presence of the parasite at the base of the stidw@r rhan on the ears. In addition, following
the artificial inoculation of spring wheat seedswas in pots, withF. culmorumthe pathogen

is isolated from all nodes and from the ears [&&ilarly, Snijders (1990a)[73] observed the
pathogen in stem tissue 70 cm above soil level @figculating plants at soil level. Many
cases of infection with various speciesrosariumhave been observed after the sterilisation
of weeds [62] and wheat [74] with sodium hypochiarivhich suggests that these infestations
are endophytic. Evidence that this is indeed tree ¢a provided by the observation that the
fungal mycelium is capable of infecting both thegmeehyma and the vascular tissue, in
which it is able to travel more rapidly [50]. Indkeafter the injection of spores into the rachis,
these authors showed that the pathogen was ahbeigiate within the plant and that it
propagated more rapidly longitudinally than tranmsed. However, it is possible that this
route of contamination is only possible in a feve@ps of plant, for a few species of fungus

or for a few plant-fungus interactions.

Dispersal by leaf-to-leaf contact also seems lika$y the pathogendvi{crodochiumand
Fusariun) are found on the leaves [15]. Atanasoff (1920}130 observed infection by
contact. This mode of dispersal should be consitddce be a specific case of aerial

contamination.
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Aerial contamination by ascospores and conididaught to be the principal source of ear
contamination [1]. This means of contamination l&en studied by many groups and
involves two possible modes of dispersal: splastand wind [2,6,7,16,64]. The relative
importance of these two modes of dispersal dependke climate and the species making up
the pathogenic complex in the year and region studind the capacity of these species to
produce ascospores.

Splashing transports spores, macroconidia in pdaticthat are too heavy to be transported
by wind [35]. The density oF. graminearummacroconidia in the air above the canopy has
been estimated to be only one twentieth that addgsares from the same species [75].

Splashing is the only means of dispersaMofnivale conidia [71]. Millar and Colhoun were
able to trap conidia only during simulated rain @itions, whereas Fernanat al. (2000)[75]
observed a peak in the release of macroconidia gfaminearumn the air one to two days
after rainfall following a long period of droughihese two studies demonstrate the major role
played by rainfall in the dispersal of spores.Ha laboratory, a conidium &. graminearum
produced in a sporodochium (the asexual fruitindytdmearing the conidiophores) from wheat
straw, receiving a single drop of water 5 mm innuié¢er falling from a height of 6 m, was
displaced by up to 45 cm in the vertical plane 8@dcm in the horizontal plane [17]. In the
same conditions, a conidium Bf culmorumwas displaced 60 cm vertically and at least 1 m
horizontally [17,76]. The spores &f poaemay reach a height of 58 cm and may travel 70
cm horizontally in rebounding raindrops [76]. Spliag alone is therefore sufficient to
transfer a conidium from crop residues or the dbase to the ear (in one or several rebounds,
relayed by the leaves), assuming there is no dest&t the canopy, the leaves of the
neighbouring plants form an obstacle. Under sinedlatinfall, the wheat canopy reduces the
dispersal ofSeptoria triticispores by 33%, to 15 cm, in the horizontal plaoenfthe source

of infection, and by 63% in the vertical plane [.7A] leaf positioned low in the canopy is
principally infected at its base whereas leavesdngip in the canopy are principally affected
at their tips, from which the spore can reboundylteng in their transfer to another leaf [76].
Splashing is considered to be the most likely medndispersal becaude avenaceum, F.
culmorumandM. nivalehave been observexh the flag leaf [15]. Rainfall plays an important
role in the development of the disease. In yeatis major epidemics of head blight or rotting
of the ear due td~. graminearum precipitation levels are generally high [2,7,8,7

Similarly, in spray irrigation trials, up to 89% ehrs may be infected, versus 0% in non-



271 irrigated controls [6]. Furthermore, humidity arainfall in spring favour the formation of
272 perithecia [59].

273

274  In natural conditions, perithecia are formed inyathle three species that generate ascospores:
275 F. graminearum, F. avenaceuamd M. nivale[6,16,64]. Ascospores are a form of inoculum
276 that can be transported by the wind [6,16]. Thedwias long been considered the principal
277 vector for spore dispersal, and damage tends wrdegest in the direction of the prevailing
278 wind [1]. Following the artificial inoculation of aone of field with maize grains infected
279 with F. graminearum, F. graminearurspores travel less than 5 m [75]. However, Stack
280 (1997)[79] indicated that the dispersal distancé&.oframinearunmspores is proportional to
281 the size of the area inoculated. According to thigdel, head blight levels halve as the
282 distance to be travelled by the inoculum doublele Taximum density of ascospores
283 observed is 1500 spores/m?, at 1.5 m from the soofenoculum [75]. The dispersal &t
284 graminearumascospores in the field occurs at temperatures3ab122 °C, with a relative
285 humidity of 95 to 100% [2]. Ascospore release iximal at a relative humidity of 100%, but
286 also occurs at lower levels of relative humiditg]6

287

288 Despite the importance of humidity, studiesFormonoliforme[67,80] andF. graminearum
289 [75] have shown that the release of ascosporestisdinectly linked to rainfall. Indeed,
290 ascospore release peaks one to four days aftdalidBiz,75] of at least 5 mm or a relative
291 humidity exceeding 80% [67]. Paulitz found thatrewer of rain in the evening did not
292 inhibit spore release but that heavier rain (astl®&amm), a relative humidity exceeding 80%
293 continuously throughout the day or the alternatdrrain and high humidity inhibited the
294 release of ascospores during the night. This resuitrasts with another study showing the
295 release of ascospores during the night followirdag on which 8 mm of rain fell [81]. The
296 correlation between spore release and humidity estggthat the maturation of perithecia
297 requires a certain level of humidity. This wouldcagnt for the results of Fernanao al.
298 (2000)[75], who observed four periods of sporeaséeover a period of 20 to 30 days.

299

300 The process of ascospore release may be descsbietlaavs [71]: after a period of drought
301 (air with low water vapour content), free waterirfrar heavy dew) triggers the release of
302 ascospores. Paulitz (1996)[67] speculated thatirtbeease in relative humidity during the
303 evening after a dry day might increase the turgesgure of the asci, which contain a vacuole

304 at high osmotic pressure [82]. This high osmotiespure is generated by the accumulation of
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mannitol and the flux of potassium and calcium if#&]. Calcium ions are also involved in
signalling for ascospore discharge [66]. This iasee in pressure triggers the release of
ascospores, which are expelled from the perithaecgéagelatinous substance, which then dries
out, releasing the ascospores into dry air. Thigldvaccount for the finding that a trap placed
above the canopy captures sevelal nivale ascospores in dry conditions and that the
concentration of these spores increases by a faft@0 in the 10 minutes following the
application of a fine simulated dew [71]. A similghenomenon has also been observed for
the ascospores & graminearuni6]. Similarly, in control conditions, the maximadlease of

F. graminearumascospores is regulated by dehydration of the hmmid in non-saturated
humidity conditions [83]. Furthermore, the timevatich the spores are released is strongly
correlated with the increase in humidity followitige decrease in temperature that occurs at
the end of the afternoon [67]. Paulitz observed #saospore release began before the leaves
became humid at the base of the canopy (which cetwat 22-24 h), towards 17 or 18 h for
temperatures varying between 11 and 30 °C and saltieelative humidity of between 60
and 95%. These results have been confirmed by liker@ation, in control conditions, that
the maximal release &f. graminearunspores occurs at temperatures between 11 and 23 °C,

with 16 °C the optimal temperature [83].

After temperature and humidity, the next most int@atr environmental factor affecting

ascospore release is light. Light is required far production and maturation of perithecia
[68] and ascospores [83]. In contrast, the proadsascospore release does not directly
require light, as it has been observed during thktn4 to 5 h before sunrise [67]. This result
has been corroborated by studies in control camti which also showed that light had no

effect on ascospore release [66,68].

Finally, the periodicity of aerial dispersion haseh studied. The release of conidia is not
periodic, whereas that of ascospores is, partigular~=. graminearun{75]. Indeed, Fernando
et al. detected no ascospores in the air between 12 amg WBereas ascospore density was
maximal between 20 h and 08 h (1.5 times highen ttaother periods of the day). Other
authors have reported that ascospore density gesteeen 21 h and 08 h [84]. Similarly,
Paulitz reported that spore release often occuvsdam 18 h and early morning (04 h — 08 h),
mostly before midnight, with a peak at around 2Z8H. ForF. graminearumthe maximum
ascospore concentration observed is of the ordé888 ascospores/nirim one hour. Paulitz

also reported spores of other speciefuadariumto be continuously present in the air, but

10
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with densities varying according to the period bé tday. Paulitz identified four distinct
periods in the day, and found that spore density k& in the morning. Fdf. monoliforme

a large number of ascospores was found to be esldastween 17 h and 08 h, with a peak
towards 02 h [80].

Although dispersal over large distances seems t@dssible, local aerial contamination
appears to predominate, in that two neighbourirngspdf land planted with the same variety

may display very different levels of contaminat[@8,55].

1-5. Infection and colonisation of the ear

In wheat, the most critical period correspondshrmoment at which the degree of resistance
to primary infection and to the propagation of fahpyphae in the plant is lowest. This
period has been defined differently by differenthaus, but the first half of the grain-filling
period is the most critical. Several authors haleniified ear emergence [64,85] or the mid-
grain-filling stage [47] as the most critical, bubst authors consider anthesis to be the most
susceptible to attack in wheat [12,16,64,86,87thwsusceptibility decreasing strongly after
the start of the dough stage [12,16,47,64,86,8Ihi&ation of the male organs from wheat
ears decreases the frequency of infectior bgraminearun{47,86]. Similarly, sterile wheat
lines are less susceptible to head blight thanlddmes [88]. This, together with extensive
colonisation of the anthers by this fungus [86]icates that the growth &f. graminearurmis
stimulated in these structures, suggesting thay eémio the anthers during anthesis has major
consequences for the grain (degradation). Two anbses — choline chloride and betaine
hydrochloride — are much more concentrated in th#heas than elsewhere [89]. These
substances favour the extension of conidial hyphaenot the germination of spores fof
avenaceum, F. culmoruandF. graminacearunj89]. Once the spores have germinated, the
propagation of the hyphae is therefore more styofagloured in the flower parts than in the
other organs. However, the difference in suscdititof different stages is probably due to
the fact that the critical receptivity peak obser(degree of resistance to primary infection
and propagation of fungal hyphae) is dependent anynfactors. These factors include the
wheat cultivar [12,47,50,90], air temperature anchidity [12,47] at the critical stage for the
plant and, before this stage, development of tleeulum, and the stage of maturity of the
plant at the time of hyphal penetration [12]. Thesta (seed coat) is more resistant to
penetration when the grains are mature [12]. Howeawés finding remains open to debate

because a recent study [91] showed that the dat®adilation has no effect on the final level
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of F. graminearuncolonisation. In maize, susceptibility to the dse#s maximal at the start
of silk development and decreases throughout the-gitling period [92]. InArabidopsis
thaliana tobacco, tomato and soybean, the floral tissuesaso the most heavily infected
[93].

The infection process is very similar in susceptihd resistant varieties [94]. The pathogen
first penetrates host tissues 36 to 48 h afteruladion [94]. The first organs affected are the
lemmae and the tip of the ovary [94,95], the argh&2] and/or the spikelets, glumes and the
rachis [50]. It remains unclear which of these aggas most frequently the initial zone
infected, but this probably depends on the datefettion and possibly also on the infecting
species. The penetration of the fungus into thesetvoured by relatively low temperatures
and high humidity [64]. The presence of and colatiis by a large number of hyphae are
required for infection [50]. The hyphae Bf graminearumand/orF. culmoruminvade the
host tissue directly [94] or via the stomata [S0hey then propagate into the ear, passing
through and around the cells in their path [12,8-%degrading the cells that they
contaminate [50,94,96]. They move principally toslsarthe rachis [94,95] or towards the
young grains, which they invade via the parenchgithe pericarp close to the embryo [50].
A short time after flowering, the parenchyma of gegicarp begins to break down, the nuclei
and cytoplasm of the cells disappear and the vedlibe cell break [12]F. graminearums
then able to enter this tissue and propagate thiutghe grain [12]. Indee®, graminearum
hyphae penetrate the thinner cell walls of the pargma tissue more easily than the thicker
cell walls of other more specialised tissues [Eltds also facilitate infection by creating

lesions on the grains that favour the penetratfdarggi [2].

Infection of the ears by macroconidiafef graminearum47], F. avenaceumF. culmorum,

F. poaeand M. nivale [6] is optimal at 100% relative humidity and 25, °&hd takes place
over 24 to 60 hours. Infection may occur at temjpees of 20 to 30 °C, but is negligible at
temperatures below 15 °C [47]. Below 18 °C, theidi@nof M. nivale are more competitive
than those oFusarium resulting in higher levels dfl. nivalecontamination. Furthermore, a
period of four to eight days of low humidity redsdie incidence of infection, but does not
entirely eliminate it [47]. The germination of maconidia, ascospores and chlamydospores
is maximal between 0 and —20 bars and is inhiblhetiveen —60 and —80 bars [97].

Ascospore germination is inhibited beyond a threshaf —30 bars (-3 MPa) of water
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potential after eight hours of drought [67]. Freatev or a low water potential also favours
infection, reducing the length of the incubatiomipe [67].

1-6. Incubation and sporulation

Perithecia and conidia develop on the surface ibke#gis and of the rachis in humid climatic

conditions [2]. The duration of the incubation périrequired decreases with increasing
humidity [16]. In conditions of saturating humidityne duration of incubation required for the
appearance of macroconidia lef culmorumandF. graminearumon the ear was 12 days at

14 °C, less than five days at 20 °C and less thesetdays at between 25 and 30 °C [2,16].
More spores are formed after a long period of gmidity. This may then result in the

infection of later crops, such as maize.

2- Effects of various cultural practices on the diseas

Various studies have identified different elementsicerning the effects of agricultural

practices (crop rotation, crop management) on béght attacks.

2-1. Effects of the crop succession history of the field

The effects of crop rotation have been studiedetaitl They depend on the preceding crop,
whether that crop is a potential host for the pgéms responsible for head blight, and the
frequency of the crop concerned in the rotatione Ehorter the rotation, the higher the
frequency of head blight. Thus, head blight is niesjuent when the susceptible crop occurs
frequently within the rotation [7]. The density ofop residues left in the field [19], their
nutritional value [19] and pathogen competition naso modify the effect of crop rotation
[19,62].

Head blight contamination is more severe if thepdeng crop is maize, durum wheat or oats,
rather than wheadr barley [14,19,48,64,98-101], and even less ecomtation is observed
following other crops [16,48]. For example, thegiiency (%necrotic ears) and the severity
(%necrotic spikelets) of the disease on wheat anesil following soybean than following
another wheat crop, or worse still, maize [19].sTmay be accounted for in two ways.
Firstly, soybean crops leave fewer residues thapatvlcrops, which in turn leave fewer
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residues than maize crops [7,19,100]. Secondly,ptinecipal Fusarium species infecting
soybean ig=. sporotrichioideswhereas wheat and maize are more frequentlytatfdayF.
graminearum[19], like sorghum [59]. Thus, in addition to thensity of residues left by the
preceding crop, the nature of the preceding cropni®rtant in determining the pathogen
species likely to infect the next crop in the rimiat The preceding crop affects the
composition of the pathogen complex throughoutftilewing year. Thus, a preceding crop
of potato will allow the development of onky. culmorumandF. sambucinumwhereas a
preceding wheat crop will allow the developmentabfFusariumspecies [62]. It should also
be noted that the highest levels Fef graminearumcontamination are recorded on grains
harvested from wheat crops following maize in tb&tion, wherea$. avenaceunand F.
poae are the most common species found in grain sampdegested from wheat crops
following a crop other than maize [60]. It is thieme advisable to introduce non-host plants
into crop rotations, to limit the disease [7]. Iede the use of oats as the preceding crop
results in a doubling of head blight inoculum ire thoil [64,98] even though this crop is
unaffected by the disease [14] whereas a precedomof sugarbeet, which is hardly affected
by Fusarium halves the incidence of the disease in the sulesgqvheat crop [14,64,98].
Similarly, flax can be used as a clean-up crop,[&6]can alfalfa, after which no disease is
observed [102]. However, the quantity of crop raegland the development of pathogens on
the preceding crop are not the only explanationthefeffect of preceding crop. Wheat crops
present different levels of infection dependingvdrether they follow wheat or durum wheat
in the rotation, even though these two precedimgp<mproduce similar amounts of residues

and are equally permissive feusariumdevelopment.

Among the other elements possibly involved, the amaf nitrogen in crop residues may
affect the possible duration of colonisationHysarium Indeed, the high nitrogen content of
maize residues may result in a longer period obrushtion of those residues by the fungi,
strengthening these fungal populations [2] and dawg disease.

It is also likely that proteolytic soil bacterigavioured by the low carbon to nitrogen ratio
under alfalfa, compete witlrusarium species, limiting their development and thus their
ability to attack the subsequent crop [62,102khbuld also be noted that, at the end of the
cropping cycle, buried cereal stubble providesdeali substrate for saprophytes, increasing

the carbon to nitrogen ratio, possibly resultinghie reappearance of the disease [98].
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2-2. Effects of soil tillage

The effects of soil tillage are also well known]esst from a qualitative point of view. As for
yellow and brown rusts [103], limited soil tillagacreases the frequency of head blight
[7,19,100], whereas deep tillage (ploughing) deseeadt [7,19,64,90,101]. Similarly, limited
tilage systems increase the number Fafsarium propagules in the soil [14] whereas
ploughing decreases inoculum levels [98].

This effect of ploughing may be accounted for imesal ways. Ploughing has several direct
and indirect effects on the structure [104,105] amdroclimate of the soil [105,106] and
therefore on the development of fungi [105], nojatblose of the genuSusarium Limited
tilage and direct drilling systems make it hartierdeliver the seed to the required position
during sowing, decrease soil porosity, increasecsiral stability and litter on the surface.
The litter layer protects the soil from rain (battg and erosion), and increases surface
humidity (by limiting evaporation), soil temperaguand inertia. This layer breaks down into
organic matter, enriching the surface soil in cartamd organic forms of nitrogen, and
modifying its chemical and biological charactedstiStores of inorganic carbon increase, the
supply of soil mineral nitrogen decreases very Bloand the mineralisation process is
delayed. The microbial biomass (bacteria and fuimgi)eases at the surface and its turnover
rate increases in the first 10 cm of soil. Humuthiss less well degraded in this zone, which
rapidly becomes more acidic, favouring the develepinof fungi over that of bacteria. Thus,
about 90% of thdrusarium roseunpopulation is located in the first 10 cm of soiB[9
Furthermore, the development of this fungus depemwdsoil aeration [14]. Although this
pathogen can survive for four years [16] at a dgpt?0 to 25 cm, it is only active and able to
develop on plant debris in the first 5 cm of s@4]. Beyond a depth of 15 cm, the incidence
of Fusarium oxysporunattacks on carnation decreases as the depth oagut burial
increases [107]. However, this result cannot belilpdransposed to other species because
Microdochium nivalendFusarium avenaceuho not produce chlamydospores [108] and the
number of propagules in the soil does not necdgsaffect Fusariumfoot rot levels due to
Fusarium culmorum[109]. Thus, for certain species, propagules mayply ensure the

survival of the fungus rather than serving as acutum [98,109].

The development of th&usarium roseumpopulation also depends on the quantity of
substrate (crop residues) available [14]. Thuseerahse in the density of residues on the

surface of the soil (after ploughing for example)ps to decrease the production of inoculum
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[100,110] and the quantity of spores availabledigpersal [109]. This hypothesis seems to be
validated by the observation that there are fewesarium culmorumpropagules if the
stubble from the preceding crop is burnt than i$ iburied [109]. However, an opposite effect
on the disease is observed. Thus, in years in wthigte are high levels ¢iusariuminfection

at the base of the stem, disease levels have lbe@ad to be higher if the stubble from the
previous crop was burnt than if it was incorporait#d the soil [109]. A similar result was
previously reported for eyespot [111]. Similarlgetsupplementary incorporation of infected
stubble not originating from the preceding croprdases the incidence Blisariumattacks
resulting in wheat foot rot to levels below thodeserved in soils in which the density of
residues has not been modified [112]. However,ethresults may be explained if stubble
limits conidium dispersal by splashing, favoursvgito of the canopy [111], or modifies the
infection process. In Yarham's study [111], theitald of stubble did not affect leaf area
index, photosynthetic potential or the number afvks. It also resulted in no decrease in the
density of wheat or weeds and had no effect orsithe of the plants. All these factors might
have facilitated spore dispersal. In the infectipuscess, four aspects may be affected by the
presence or absence of stubble. Firstly, the eegist of the plants may be affected by
increases in the amount of silica ($)0n the leaves of the wheat plants following the
incorporation of additional stubble [112]. The htpesis that silicon plays a protective role
arises from work [103] indicating that this elemetrengthens cell walls and, particularly, the
outer membrane of epidermal cells, increasing teste® to the penetration of pathogen
germination tubes in leaves containing large ansuontsilicates (shown experimentally for
the penetration oErysiphe graminis which causes powdery mildew on barley) [113].
Similarly, adding silicon decreas&sisariuminfections and powdery mildew in cucumber
[114]. All changes in the structure and microclieaf the soil, the date, method and depth of
stubble incorporation also influence the extent dypdamics of crop residue decomposition
[105], which may in turn affect head blight levelldeed, in optimal conditions of
microorganism colonisation and water and nutriechange, the area of contact between the
soil and crop residues (affected by the size ofrdmdues and soil porosity) is maximal,
accelerating residue decomposition [105]. Consetpyeatespite providing a larger source of
inoculum, stubble incorporation increases the o&tgegradation of crop residues, decreasing
the duration of colonisation of these residues bBth@gens such aBseudocercosporella
herpotrichoideqd110]. These pathogens are thus less well devd]apsulting in lower attack
rates, which in turn results in slower spore matonafollowing changes in humidity, light

levels or temperature, or lower levels of sporedpoion [111]. Indeed, it is possible that the
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decomposition of stubble results in the producbbisubstances toxic to fungi or that favour
the microorganisms engaged in stubble decomposiii@neby creating competition between
microorganisms [111], limiting the production ofosps. Finally, a study dfusariumfoot rot

showed that the distribution of crop residues s phimary factor influencing the site of

penetration of the fungi [115].

2-3. Effects of irrigation

The irrigation of a field influences its microcliteaand may encourage the development of
the pathogen. Regardless of whether the clima@vurable for the disease in a given year,
irrigation increases the frequency (% necrotic eansl severity (% necrotic spikelets) of the

disease over that in non-irrigated plots [19,90].

Uncertainties concerning the survival of the fungughe soil and its capacity to sporulate in
the soil as a function of soil aeration, porosity dight levels, together with the role played
by the rate of residue degradation and that ofctimapounds generated by this process, and
their mineral composition (nitrogen, silicon) linmtir ability to make quantitative predictions

of the effects of the preceding crop, soll tillagerrigation.

2-4. Mineral nutrition

The effects of mineral nutrition on head blightaaks are unclear. As nitrogen applications
favour the development of the plant, making theopgnmore humid, it has often been
suggested that such applications are likely to diawbe appearance of diseases [103,116].
This has been demonstrated for bunt [103] and IblotcSeptoriadisease [117]. In fact, the
severity ofSeptoriaattacks on wheat is increased by 11%, which cpomds to a yield loss
of 8-9%, following treatment with 100 kg of nitrag@er hectare [117]. Nitrogen application
significantly increases the incidence edisariuminfection in grains of wheat, barley and
triticale [118,119] and the predisposition of wheaattacks byr. avenaceunandM. nivale
[116]. Similarly, mineral nitrogen applications mease the number oF. culmorum
propagules [108]. However, in a two-year study,cle{1989)[90] showed that nitrogen
application limited the disease in the first ye28][ although this decrease was not confirmed
in the second year [100]. Fauzi and Paulitz (1994)] also demonstrated that disease levels

were similar in the presence and absence of apiplitsaof 140 kg/ha ammonium nitrate.
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There are two possible reasons for the uncertaint@ncerning the effect of nitrogen
applications on the disease. Firstly, in certaisesa the applied nitrogen may be poorly
distributed in the soilFusariumfoot rot levels have been shown to decrease if ameal
nitrogen is applied with a syringe to the tillegida but not if it is mechanically applied to the
field [121]. Secondly, there may be an as yet umtifled link between attacks d¢fusarium
foot rot and head blight [6]. Thus, nitrogen-contag fertilisers may have a different effect
on theFusariumhead blight and thus affect the production of heleght inoculum. This link
may involve competition between the speciesa$ariummore specific to foot rot (such as
F. solan) and those more specific to head blight (sucthaspecies of thE. roseungroup).
Indeed, whereas germination of the conidigFokolaniis decreased by nitrate application,

spores of the species of theroseungroup use all forms of nitrogen [122].

Different forms of nitrogen have different effectérea appears to reduce head blight levels
more than ammonium [90,123]. Teich (1989)[90] swhe@ three hypotheses to account for
this difference between urea and ammonium: i) theaumay decrease the size of the
Fusarium population because nitrite blocks reproductionthese fungi and inhibits the
formation of chlamydospores [124], i) urea may ver®@ the maturation ofusarium
ascospores, as it does for thos&/ehturia inequalig125], iii) urea may increase the number
of actinomycetes in the soil [122,126], these nhbe being antagonists dfusarium
graminearunm{126] andF. oxysporunjl122]. Furthermore, rotting of the base of therstnd

of the roots is more severe if nitrogen is appliedan ammoniacal form than as nitrate
[121,122,127]. This may also result from the higree of germination of. solani(which
may cause foot rot) in the presence of ammoniadaigen than in the presence of nitrate
[122].

In contrast to what was observed for bunt [103¢ #pplication of phosphorus has been
shown to limit foot rot [128] and head blight [9%owever, the result obtained for head

blight was not confirmed in the second year ofgtuzly [100].

Potassium application decreases transpiration bgiteg stomatal closure, thereby helping to
decrease the humidity of the air. Thus, the apftineof potassium limits the germination of
rust spores [103]. Furthermore, high levels of gsitam favour the synthesis of high-

molecular weight compounds (such as cellulose)redsing the availability of nutrients to
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the pathogens and increasing mechanical resistanparasite penetration [103]. However,
potassium applications do not appear to affecirttielence of head blight [100].

To understand the meaning of these contradictsyli® we need to bear in mind that the
effect of fertiliser applications depends on twotdas: the age of the plant and the balance of
mineral elements. Indeed, foot rot levels are desmd by early applications of nitrate but
increased by late nitrate applications [128]. Cosely, foot rot levels are increased by early
potassium applications and decreased by late potasspplications [128]. Moreover, the
application of manures with a poor nutrient balalesgls to more severe foot rot symptoms
[14,64]. Antagonism between nitrogen and potasssigenerally reported [14,103]: excess
potassium and nitrogen deficiency render the plarore resistant whereas potassium
deficiency and excess nitrogen render it more gigde. This antagonism results from the
fact that potassium increases nitrate absorpti@2][1The nitrate absorbed activates nitrate
reductase, leading to the accumulation of amindsafi27]. These amino acids are used in
the synthesis of organic nitrogenous compounds ][1&& of high-molecular weight
compounds [103]. These compounds, like cellulosefribute to the resistance of plants to
diseases by increasing mechanical resistance &sipampenetration and by decreasing the
guantities of soluble amino acids and low-molecul@ight carbohydrates, which serve as
nutrients for these pathogens [103]. Soluble amawds and low-molecular weight
carbohydrates are produced by increasing the aictivaf nitrate reductase in the presence of
excess nitrate, by activating enzymes such as amylaroteases and glucosidases, and by
decreasing phosphorylation in conditions of potassdeficiency [103]. This increases the
intracellular concentration of these compounds [1(@&vouring the development of

pathogens.

Maize plants are most resistant to diseases whgar foncentrations are high [129]. Sugar
levels are inversely proportional to nitrogen sypahd directly proportional to potassium
supply [14]. Conversely, if we consider three, estthan two, mineral elements, the mineral
balance least favourable for the development of fobin wheat, both in seedlings and in

adult plants, is high levels of nitrogen and patassand low levels of phosphorus [128].

Several studies have demonstrated the existeneerelationship between the mineral and
organic composition of the soil and the developmahsoil microorganisms, which may

antagonise or stimulate the developmenFw$arium Thus, applications of organic fertiliser
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rich in nitrogen, particularly the ammoniacal anttqus acid forms, significantly reduce (by
a factor of 1000) the size of the populations ohynsoil pathogens and markedly increase the
size of populations of soil microorganisms [123urtRermore, a mixture of ammoniacal
nitrogen and ammonium is recommended to increage cdipacities ofPseudomonas
fluorescengopulations, thereby favouring the developmerthefplant (as this bacterium is a
rhizobial bacterium) and inhibiting the developmeftFusarium[130]. An application of
glucose (simulating root exudates) to soils comagichlamydospores &f. oxysporunandF.
solanifavours the germination of these spores and theldement of their germination tubes
[131]. A similar result was also reported in a poe study: wheat root exudates increase the
number and length of germination tubes arising ftbenspores oF. roseumand M. nivale
[98]. The effect of glucose application is evenagee if the soil is nutrient-poor, especially for

slow-growing species such as those of the géunigarium[132].

The mineral nutrition of plants and the developmehtmicroorganisms in the soil also
depend on soil pH. The conidia gk nivaledo not germinate in cultuia vitro if the pH of
the medium is lower than about 5 [11]. However, pas been found not to affect the

incidence of the disease [99,100].

2-5. The effect of sowing date

Sowing date is another element of crop managentait has an indirect effect on the
production of, and infection by spores, becauggirtly determines flowering date, together
with the variety sown and climate. If the sowingede such that flowering coincides with
spore release, then more frequent and severe sittaieklikely. This hypothesis is based on
the fact that the anthesis is the stage in wheathath the consequences of pathogen attack
are thought to be the most severe [12,16,86,87].

The effect of sowing date should therefore be a®rsid with respect to the level of attack as
a function of the earliness of the variety. Earlgtaring wheat cultivars tend to be more
resistant to head blight than cultivars that matater [133]. The duration of the growth
period in wheat has a significant positive effeélse longer the cycle of the variety, the lower
the degree of contamination observed [134]. Aseffisct is not observed in barley and oats,
Couture [134] suggested that the threshold numbdays exceeds the length of the cycle for
wheat, but not for barley and oats. However, cofifig results were obtained in other
studies: resistance to head blight has been showe thdependent of maturity factors [135],

and late sowing has been shown to favour the dpwedat of head blight whereas early
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sowing favoured the development of foot rot [16heTresults obtained almost certainly
depend on the climate of the region concerned had/ariety grown. Flowering period and
the duration of the growth period for a given viriprobably depend essentially on the year
and region concerned: the only valid way to detaenhe characteristics (period and duration
of flowering and growth duration) of varieties atlapto a given region is to carry out a
frequency analysis of the climate, which requites tonitoring of head blight attacks in a
given region over many years. Sowing on severagéto extend the flowering period)
should make it possible to limit the risk of heagntamination in all the fields. A frequency
analysis in a given region may also provide usé&itdrmation for the optimal choice of
sowing date.

2-6. Effects of canopy density

If the inoculum is dispersed primarily by splashitite density of the canopy is an important
factor as it may place obstacles in the way of tlépersal. Thus, a low canopy density can
favour spore dispersal (by creating fewer obstaclasthe case of high canopy density, due
to nitrogen fertilisation and/or higher sowing dignsind/or smaller spaces between rows of
wheat, two opposing effects may be observed. Firdte high density is likely to increase the
humidity of the canopy [116], favouring spore garation, as has been observed for rusts
[103]. Alternatively, the high density of the cayomay increase the number of obstacles,
limiting the vertical dispersal of spores towartle ear. However, foFusariuminfections,
more severe attacks of foot rot [16] and head blj§hhave been reported in cases of high

population density: more than 350 grains sown Fel@.

Plant population density may also be increased bgdninfestations. In the presence of a
large weed population, the number of specied-udarium causing head blight in wheat
increases, as does the intensity of the diseas@ljil may be accounted for by the number of
common field weeds (both dicotyledonous and mondedbnous weeds) on which
numerous species dfusarium have been detected [62]. Table 2 lists the variwesds

known to serve as hosts fleusarium and the species &usariumfound on them.

The "host-plant” nature of these weeds [14,48,§%88gests that they constitute a potential

source of inoculum. Since 1950, grass weeds haee kaspected to act as a source of
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inoculum whereas other weeds have been thouglavimuf infection in a different way, by
modifying the microclimate, increasing heat and ity [136].

Whatever the role played by the various weed fasiilthe decrease in the incidence of the
disease following the use of herbicides suggestswieeds do have an effect [99]. However,
different results were obtained in the followingayeof the same experiment [100]. This
difference probably results from interactions betwecultural practices and weeds. For
example, the withering of forage grasses (fescoeksfoot, ryegrass) due t6. roseum

increases with the dose of nitrogen applied [14].

2-7. Effects of infestation of the canopy by bioaggress® others than fungi responsible
for the head blight

The term "canopy" is often used to describe themmanopy, consisting of healthy plants.
Diseases, particularly foliar diseases, decreaseitba of the plants capturing light, thereby
limiting the development of the crop. Very few stslhave focused on the competition
between pathogens or between diseases. Only twwrauhave analysed the effect of a
powdery mildew attack on head blight, and the itesofl these two studies conflicted. In the
first study, powdery mildew attacks were found tavédr a positive effect on head blight
attacks [30] whereas in the second, no effect laerwed [99]. These conflicting results may
be accounted for by several factors, such as dlneainditions, the varieties cultivated and

the intensity of the diseases in these studies.

In addition to soil microorganisms (discussed iotisa 2-2), the ear microorganisms play a
role, notably in biological control [137]. Indedtie plant may be protected against pathogen
attacks by prior inoculation with pathogen isolavés/arious degrees of virulence, which is
known to induce resistance in cases in which ptiotecrequires activation of the host's
defence responses [138]. Thus, inoculation wihcrosphaeropsisspp. significantly
decreases the production lef graminearumascopspores on wheat and maize ears and, to a
lesser extent, on wheat and maize residues [13]/,IBB decrease is particularly large if the
residues are inoculated early wNhicrosphaeropsigtest with inoculation two weeks before
the F. graminearumattack and 4 to 6 weeks after it) [137]. Priordalation with Phoma
betaeor Pythium ultimumdecreases the severity of head blight on wheatexitehds the
incubation and latent periods of the disease due talmorum, F. avenaceum, F. poaed

M. nivale[138]. Such prior inoculation also significantlycreases the number of grains per
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ear and decreases the numbeFudariumisolates obtained from the harvested grains [138].
A previous study [140] showed that contact betwBgthium oligandrumandF. culmorum
macroconidia led to coagulation and a loss of dgimp, followed by complete degradation of
the walls of the macroconidia and the productionPythium oligandrumoogonia in
abundance on the parasitised macroconidia. Inocoladf wheat ears withAlternaria
alternata, Botrytis cinerear Cladosporium herbarurat GS69 (Zadoks growth scale, Zadoks
et al.1974[141]) favours the infection of ears inoculatgth F. culmorumat GS65, whereas
prior inoculation, at GS59, decreases infectiothef ears byr. culmorum[142]. Following
the demonstration of antagonism between these [daytes, Liggittet al. [142] suggested
that Alternaria alternata, Botrytis cinereand Cladosporium herbarunproduce volatile
antibiotic substances that limit the growthFofculmorum consistent with the decrease in size

of F. culmorumcolonies observed following prior inoculation witther saprophytes.

Such antagonism is also observed betweasariumspecies [22,27] and between species of
Fusarium and Microdochium|[22]. This is the case, in particular, for fungieitreatments
acting against only one of these genera, resuitirtge development of the unaffected genus
to a greater extent than in the absence of tredafmdren the two genera compete [21,22].
Similarly, prior inoculation with germination fluittom F. avenaceurpredisposes wheat ears
to infection by conidia oF. avenaceurnor M. nivale but not by conidia df. culmorumor F.
poae.Other germination fluids were found to have no saffect [138]. This suggests that
diffuse substances present in the germination ffife. avenaceunpromote the production in
competitive host tissues of resistance factorsiBpdéar F. avenaceurandM. nivale[138].

2-8. Effects of chemical treatments

The efficacy of fungicide treatments for head Wiigh variable, and difficult to predict. It
depends not only on the active ingredient but alsdhe method and date of application of
the fungicide [6,27]. If a fungicide treatment aslie effective, it must be applied several days
before the attack and entirely cover all the edf2]. Efficacy also depends on the interaction
between fungal development and climate [143], tinelance of the pathogenic strains [143]
and above all, the parasite complex present orplitieof land concerned [6]. Each of the
fungal species implicated in head blight has a ifipefungicide susceptibility profileF.
graminearum is particularly susceptible to triazoles wherelas avenaceumis more
susceptible to strobiluring.. roseuma complex consisting ¢f. graminearum, F. culmorum

and F. avenaceumis much more susceptible to triazoles thanMs nivalg which is
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essentially susceptible to strobilurins [22]. Takez fungicides containing tebuconazole are
currently the most effective [21,27,143].

Chemical treatments may have an effect by modifyiregheight of the canopy. For a single
variety grown in a single year, in a single regithe use of plant growth regulators (primarily
gibberellin inhibitors) results in more severe hddight attacks [14,64,118,120]. This is
presumably because plant growth regulator treatmesilts in the ears being closer to the
soil, and therefore to the crop residues (sourceatulum), facilitating the dispersal of the
spores to the ear (by splashing in particular)eédj the distance of the ear from the soil is a
factor for resistance by avoidance in cultivarsan®lgrowth regulators also affect the
microclimate of the crop residues on the soil [1383ssibly increasing the production of

perithecia and ascospores.

3- Effects of various cultural practices on the produton of mycotoxins by

Fusarium
The effects of cultural practices on the intensityd severity of head blight symptoms are
well documented, at least for certain practicegd, fau fewer studies have considered the

effects of these practices on mycotoxin production.

3-1. Mycotoxins produced byFusarium

Fungi of the genuMicrodochiumare currently considered not to produce toxinsaf@] will
therefore not be dealt with in this section. It gldoalso be noted that studies on the
mycotoxins produced bifusariumhave generally focused on deoxynivalenol (DONgrev
though Fusarium also produces other types of mycotoxin. Figurer@ents the chemical

structures of the main mycotoxins produced-bgarium

Deoxynivalenol belongs to the trichothecene famiijch contains two types of toxin: type
A and type B. Type A toxins include toxins T2, HT@iacetoxy-scirpenol (DAS) and
scirpenol [39], which act on the initiation of peot elongation [144]. Type B corresponds to
deoxynivalenol (DON or vomitoxin) and its acetylridatives — 3-acetyldeoxynivalenol
(3acDON) and 14-O-acetyIDON-4 — nivalenol (NIV) anerrucarol [39]. The toxins of this
group act on the elongation and termination stégsatein synthesis [144]. Trichothecenes

are toxic to all organisms. In mammals, the absampodf trichothecenes leads to blood and
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digestive disorders. In humans [145], burning seomiss in the mouth and stomach,
headaches, a decrease in red blood cell countjibtgenecrosis of the throat and stomach
and, in some cases, death, were observed in a Ianem catastrophe in the USSR between
1942 and 1947 caused by the ingestion of wheaththétsuffered foot rot all winter [38,39].
The production of trichothecenes is favoured bydcahd humidity [146] and studies on
various organisms have demonstrated the toxicith@de substances. In animals, vomiting is
observed after the ingestion and absorption oféadt|10 mg deoxynivalenol per kg, together
with irritation of the mucous membrane lining theuth and the oesophagus, with animals

refusing to eat after ingesting 2 mg deoxynivalgrer kg.

In plants, deoxynivalenol retards the germinatiod growth of wheat, and inhibits the
growth of the grain and the coleoptile tissues [14he phytotoxicity of mycotoxins is
generally estimated by means of coleoptile eloongatiests [43,145]. In adult plants,
deoxynivalenol seems to circulate in the phloenthwhe concentration of this molecule in
the plant following a descending gradient from thehis, through lemmas and grains to the
peduncle [148]. In addition, from the fourth dayeafinoculation, the flower parts, rachis and
peduncle contain larger amounts of deoxynivalembb\Ww the point of infection than above it
[149].

Fusarium can also produce mycotoxins of two other familiésmonisins, which are
recognised carcinogens [13,150] and zearalenonaral&mone belongs to the oestrogen
family. It perturbs reproductive hormone equilibmiuand alters secondary sexual characters
[145]. Pigs are particularly sensitive to this toXi45]. In the laboratory, it has been shown
that this compound also controls reproduction i@ filngus that produces it, by regulating
perithecium production [151-153]. No phytotoxicesff of zearalenone has been observed in

coleoptile elongation tests [145].

To account for the small number of studies dealvith the mycotoxins produced by
Fusariumon wheat, it should be borne in mind that mosthelse studies have been carried
out in Europe and North America, where type A titiecenes are rarely detected [154].
Furthermore, fumonisins and zearalenone are fossdngially on maize [8,155]. In addition,

zearalenone is considered to be only mildly togibwmans [155].
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3-2. Effect of soll tillage

Soil tillage seems to have similar effects on thedpction of mycotoxins and on the disease
itself (see part 2-1). Unlike chisel ploughing addect drilling systems, mouldboard
ploughing decreases the concentration of deoxyemalin the grains [19,101,156]. In one
study, a significant positive correlation betweeeoxynivalenol concentration and the
intensity of solil tillage (ploughing or direct dnilg) after a maize crop was observed [100].
Similarly, another study comparing three croppiggtams involving ploughing (productive,
integrated and organic) with a direct drilling st over two years reported that levels of
deoxynivalenol, zearalenone and nivalenol contatimnavere highest for the direct drilling
system [55].

3-3. Effect of the preceding crop

The effect of the preceding crop is also similar desease symptoms and deoxynivalenol
concentration. Deoxynivalenol concentration in whe&5% lower after a soybean crop than
after a wheat crop and 49% lower after soybean #ffien maize [19]. Wheat following maize
in the rotation has been found to have deoxyniv@leoncentrations six times higher than
those in wheat following another cereal (wheatjdyaror soybean [100]. In direct drilling
systems, wheat crops following an oilseed rape cagain 90% less deoxynivalenol than
wheat crops following a maize crop [101]. As foil $ilage, only few studies have produced

useful results.

3-4. Effect of mineral nutrition

We saw in section 2-3 that the effects of minenatrition on the disease are unclear. In
contrast, there are fewer strong contradictionscenrning the effect of mineral nutrition on
mycotoxin production. This is probably because vy studies have focused on this
guestion. Increases in nitrogen input from O to KRflha, result in increases in grain
deoxynivalenol content; at levels above 80 kg/hasnsall but significant decrease was
observed [119]. Urea-based fertilisation resultedoiver levels of deoxynivalenol in wheat
grains than did ammonium nitrate in 1997, but teisult was not observed the preceding
year, in which no effect had been demonstrated][1Applications of ammonium-nitrate-
urea solution and nitramoncal did not give siguaifity different results [119]. Potassium,
phosphorus and pH did not appear to affect deosy@inol concentration significantly [100].
A laboratory study showed that Ffgions inhibit the elements responsible for inducing

trichothecene synthesis [38].
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These studies were empirical, and were not baseahgrparticular assumption concerning

the mechanisms involved. It therefore remainsdiffito extrapolate the results obtained.

3-5. Effect of variety earliness

Very few studies have focused on the effect of wivaaiety earliness on the production of
mycotoxins. The earliest varieties seem to accurautaore deoxynivalenol than do late-
flowering varieties [157], possibly due to variewifferences but more probably due to
greater coincidence of the phase of maximum subdéptin plants with the period most
favourable for spore dispersion. This trend appéatse based on the relationship between
the severity of the attack and the intensity ofinosontamination. The choice of variety is

therefore of key importance for combating the acakation of toxins in the grains [158].

3-6. Effect of fungicide treatments

The application of a triazole fungicide, such adut®mnazole, decreases levels of
deoxynivalenol contamination in artificially ino@ied crops with respect to those observed
in untreated controls [21,27,28,143]. However, totfig results have been obtained [22].
More generally, in conditions of natural contamioaf the application of fungicides does not
significantly decrease the concentrations of deosanol and nivalenol and there is not
necessarily a correlation between the applicatidnfumgicides and the quantity of
deoxynivalenol and/or nivalenol found in the grai@$5]. This may be accounted for by the
multitude of species present in fields and thetiraspecificity of fungicide treatments for
only one or a few species. Another hypothesis lh&s lzeen put forward: too low a dose of

fungicide may stimulate the production of deoxyieva! byFusariumin wheat grains [53].

This analysis shows not only that few studies haweestigated the effects of cropping

systems, but also that the characterisation ofdikease in these studies is often severly
flawed. This makes it difficult to extrapolate atalinterpret the results. To understand the
relationship between cropping systems and mycotpsaduction, we therefore need to break
down this relationship into two parts: the effedf cropping systems on the disease
(symptoms, nature of the pathogenic agent) (se@ipmand the relationship between the
disease and the production of mycotoxins, which nsslf vary as a function of cropping

system.
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4- Relationship between the disease and toxin produotn

4-1. Toxin production by the fungi

Toxin production in fungi is controlled by many fars. One of the most important factors
intrinsic to the fungus is the genetic capacitytltd pathogenic strain to produce toxins, in
terms of the quantity and type of toxins produc8d,159,160,161]. Thus, strains Bf
graminearummay, like F. culmorum produce isomers of monoacetyldeoxynivalenol or
alternatively, likeF. crookwellensemay produce acetyl derivatives of nivalenol [8{rains

of F. sambucinummay produce the T2 toxin whereas thosd-okporotrichioidesproduce
diacetoxyscirpenol (DAS) [4]. It should be notedttBtrains of. graminearuni60,159,162]
and of F. culmorum([163,164] tend to produce either deoxynivalenolnoralenol, but not
both. Thus, the two toxins are generally not preduby the same strains, although the two
types of strain often coexist in the same field5|1L®/oreover, regionalisation of the types of
strain at world level is observed fier graminearunstrains producing 3-acetyldeoxynivalenol
and those producing 15-acetyldeoxynivalenol, withiss producing 3-acetyldeoxynivalenol
predominating in Europe, China, Australia and Negaland whereas those producing 15-
acetyldeoxynivalenol predominate in the United &i&tl59]. Data for a collection of 188
strains ofF. graminearumindicated that European and American strains predssentially
deoxynivalenol and are more aggressive than Nepatgins, which produce either
deoxynivalenol or nivalenol [166]. A negative cdateon has been found between the
production of zearalenone and that of trichothesegeoxynivalenol or nivalenol) by the
spores ofF. graminearum[52]. This appears to indicate that the productbrihese toxins
shares a common control process, which may playngortant role in the ecology df.
graminearumandF. pseudograminearufb2].

Other factors may also cause variations in toxirmigion. These factors include the
substrate, the period of colonisation of the sabstiby the strain, competition between
microorganisms [2,34,52,53], interaction betweea gathogenicity of the strains and the
wheat variety [167,168] overall climatic conditioffl] and, more particularly, temperature
[2,52-54], humidity [2,52,53] and rainfall [54].
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Other poorly understood factors extrinsic to thegius also operate. For example, the protein
to carbohydrate ratio, which is important in mycatosynthesis [169], may play a role.
However, Bakan (1998)[38] showed that toxin formatis not necessarily controlled by food

stresses and is not necessarily linked to the ¢grofvthe fungus.

This last point is particularly important becausany authors have suggested that the
trichothecenes (deoxynivalenol in particular) proelll byFusariumspecies play a role in the
aggressiveness or virulence of certain isolates4,[I&-174]. Indeed, certain mutants
deficient in deoxynivalenol are less aggressivewdreat than the original strain [175].
Similarly, the least virulent mutants &% graminearumin terms of plant colonisation are
those unable to produce deoxynivalenol or nivalémaltations in the Tri5 gene, involved in
trichothecene production) [171]. Thus, trichothexeare considered to be virulence factors in
F. graminearum during the infection of wheat [145,175], andRn culmorum during the
infection of barley [164].

In conditions of artificial contamination with awvgin pathogenic strain or in natural
contamination conditions, several authors [19,27100,147,164,176,177] have observed a
significant, positive correlation between the imsde and/or severity of the disease and
deoxynivalenol concentration (also reported by Baial., 2001[49] for 116 wheat lines).
Others [26,49,178,179] have demonstrated a sigmificorrelation between deoxynivalenol
concentration and the fungal biomass of the gré@msasured by assessing the amount of
ergosterol). These results suggest that new cudticauld be selected on the basis of
symptoms to ensure low levels of deoxynivalenolweeer, exceptions were found among
these lines: certain cultivars present severe symgtwith low deoxynivalenol levels,
particularly those with moderate resistance to agapion of the pathogenic agent [49]. Thus,
the production of deoxynivalenol is not essential the infection of grains [164].
Furthermore, after the inoculation of five wheatietes with a strain of. graminearumno
correlation was observed between deoxynivalenoteoination and the severity of infection
[172]. Similarly, after inoculation with a complexf species, no correlation was observed
between deoxynivalenol concentration and infectmn wheat, barley or oats [178]. In
conditions of natural contamination, no correlatltas been found between the intensity of
the disease on wheat and the concentration of déwdgnol [53,55,78], or between the
presence ofFusariumand the concentration of deoxynivalenol [154]. Tiak of relationship

is also observed with other toxins, such as nia@lgsb]. A similar result was obtained with
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maize: after inoculation of the ear with poae no relationship was found between the
severity of the disease and toxin (nivalenol andafanon X) production [180]. These
differences in results may be due to the rangaesoétion tested and the comparisons made
not being the same. Some comparisons were made ifielld and others in the laboratory;
some were made after artificial inoculation witrear several species and others were made

in natural contamination conditions.

The date of the attack and the species involved affects the relationship between
symptoms and toxin levels. Indeed, it is only todxpected that as the number of affected
grains increases, so does the risk of major com@ion by mycotoxins. However, a late
attack may prevent the disease from reaching albigH of severity, even if very high levels
of mycotoxins are produced. Thus, fungi and mycoi®xare detected before any visual
symptoms of disease [148,181]. In addition, notth# species of the parasite complex
responsible for head blight produce mycotoxiMicrodochium for example, does not
produce mycotoxins. Similarly, even amorksarium species potentially capable of
producing toxins, strains unable to produce tokiage been identified [2,38,162,182]. Other
strains have been identified that produce far ntoxen than the mean amount for all strains
[183]. In addition to climate (particularly rainfalevels and temperature before and at
flowering), the species profile of the fungi respilme for head blight also depends on
agronomic factors such as soil tillage, nitrogentilfgation, fungicide use, crop rotation and
host genotypes [10]. Furthermore, the specigsusariumpotentially able to produce toxins
cannot necessarily produce trichothecenes (the rmanstied mycotoxins) [183]These
observations indicate that it is possible for thenpto present symptoms in the absence of
toxin production. However, the conditions of tonoductions in the field remain mostly

unknown.

The relationship between the intensity or seveoitysymptoms and toxin production also
depends heavily on the type of resistance carnethé plant. The severity of symptoms is
known to depend heavily on plant resistance: aeiganotypes limit the development of the
mycelium in the grain, protecting the grain agahsgradation and limiting the visual signs
of attack, but are not very tolerant of mycotoximsth very high mycotoxin levels being

recorded [49]. Conversely, other types of cultineay present severe symptoms with only

low mycotoxin levels [49].
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4-2. Different mechanisms of genetic resistance teusarium head blight in plants
Non-specific resistance

It is not easy to identify cultivar resistances dese the species Blisariumresponsible for
head blight are saprophytes with a broad host-ramgelow levels of intraspecific variation,
which is not the case for pathogens in generaB]6)L should also be noted that all cultivars
are susceptible to some extent, with even the Isasteptible cultivars displaying only
moderate resistance [16,49,50]. Resistance to #éwelopment of the fungus and to the

accumulation of trichothecenes is probably contbby different genes [43].

Heritability of the resistance

The low specificity ofFusarium and Microdochium generates polygenic resistance in the
plant, involving genes with various degrees of dwance [43,184]. It is the combination of
these genes, controlled by the environment [17& tbsults in genetic resistance in the plant
[13].

The inheritance of resistance can be described biprainance-additive effect model, in
which the additive effect is the essential factes(lts based on diallel analyses) [9,25,185].
Several studies [18,25,186-188] have demonstraeexistence of resistance genes on 18 of
the 21 chromosomes (1B, 2A, 3, 3B, 4B, 5A, 6B, BB, 7B etc.). Three pools of genes are
responsible for three different genetic constitagi@onferring different types of resistance to
head blight in wheat: in Eastern European winteeatb, in Japanese and Chinese spring
wheats and in Brazilian and Italian spring whed®9]. The most commonly used source of
resistance is undoubtedly Sumai 3 (in China), inctvlstable resistance is combined with
valuable agronomic characteristics (yield potenald resistance to rusts and powdery
mildew) [18,43,190]. The resistance of this genetypke that of Frontana (a Brazilian
variety) and Nobeokabouzu-komugi (a Japanese yaretthe two other major sources of
resistance — is based on two or three genes widitiael effects, the sensitivity of which
varies with a multitude of minor genes [9,18,19The crossing of Frontana and Sumai 3
resulted in the detection of two major quantitatixegt loci (QTLs) [13]. These sources of
resistance are of great potential value for futtn@sses and the selection of new cultivars
because they are stable.

Resistance to head blight in wheat is horizontah{specific) and thus protects against all

species ofFusariumandMicrodochium[6,18,43,192].
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No correlation has been found between seedlingteagie and resistance in the ear. Thus, a
given cultivar may be susceptible at the seedliagesand resistant at the adult stage or vice
versa. Alternatively, it may be susceptible thromgththe crop cycle [5]. The activation of
resistance genes during an attack depends on tedogenental stage of the wheat, varying
throughout the crop cycle [5,47,49,50,90]. Peakintaxccumulation also depends on the
cultivar grown [193]. Finally, it should be noteddht the duration of the induction period and
the intensity of the response to the defence meésmasrnnduced also determine the defence of
the plant [43]. Tetraploid wheats are more resiao head blight than are diploid wheats
[194].

The defence or resistance mechanisms of the pépendl not only on growth stage, but also
on the humidity and temperature of the air [47] amdthe genetic capacity of the wheat
cultivar [5,18,49,50,90]. However, no plant hosfethee reaction has ever been detected
macroscopically or histologically on the outsiddlw glumes [12]. In addition, no cellular or

anatomical characteristics [13,50] or histologidaatures [50] have been found to be
associated with resistance or susceptibility. Havevhe techniques currently used, and
ultrastructural studies in particular, have showat tsusceptible and resistant wheat varieties

react differently to infection and to the propagatof pathogens [94].

This implies the existence of multiple mechanisrhgl@&fence or resistance in plants, both
active (including physiological processes) and pass(including morphological
characteristics such as avoidance), and/or tolerfsic Five types of cultivar resistance are

currently known and described.

Types of resistance

Type |: Resistance to initial infection [50]. Many cultivars may be resistant to initial
infection. According to Nakagawa (1955) [195], thige of resistance is controlled by
dominant genes at three loci subject to epistdsis type of resistance may be passive or

active.

Passive mechanismsvolve morphological characteristics facilitatiagoidance, making it
possible for the plant to decrease the severith®fdisease. The receptiveness of cultivars to

the disease is lower in cultivars with awns [5,B4]1 regardless of varietal differences in
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resistance [134]. Similar results have been obthingh wheat, barley [134] and oats
[45,134]. Similarly, the height of the ear andatggle with respect to the stem are negatively
correlated with the severity of head blight and @lceumulation of deoxynivalenol [191]. The
receptiveness of cultivars teusarium and/or Microdochiumis also lower for ears with a
large peduncle — at least 15 cm between the flag 4ad the ear [5] — and/or without
growth arrest, reducing the area in contact withdbnidia and the duration of grain humidity

[5].

A cultivar well adapted to its environment is alscriterion for resistance to head blight
[18,43]. Indeed, a canopy with too many ears [5dr6d flowering season that lasts too long
[2,90] is likely to result in slightly higher suguéility to the disease. The resistance of a
variety may be evaluated as a function of the damadf time for which the flowers remain
open and of the percentage of flowers presentinggamous flowering (unopened anthers)
and allogamous flowering (opened anthers) [50]dfésihave shown either that resistance to
head blight may be maximised by the use of earlyetias [133] or that earliness has no
importance [135]However, the importance of this factor seems tceddpon the date of the
attack and, thus, on the year and region studiedila8ly, only one study has investigated the
effect of flowering date on mycotoxin contaminatidhe time of infection by. culmorum
that produces the greatest amount of deoxynivaleantamination is restricted to a short
period during anthesis [87]. However, like diseasewering period and variety growth
duration probably depend essentially on the yedrragion concerned: the only valid way to
determine the characteristics (period and duratbrflowering and growth duration) of
varieties adapted to a given region is to carry foequency analysis of the climate, which

requires the monitoring of mycotoxin contaminatiora given region over many years.

It is widely accepted that morphological charast&s are less important than the possible
physiological resistance of cultivars [9]. This plojogical resistance includes all the other
possible mechanismsActive mechanismsinclude defence reactions concerning the
physiological qualities of the cell that limit colisation of the plant by the fungus, such as the
activation of enzymes degrading the fungal celllw&lich a mechanism has been proposed
for pathogenesis-related proteins (PR proteins)kardothionins [196]. Mechanisms of this
type may account for the induction of several de¢egenes 48 hours after inoculation,
including genes encoding chitinases, glucanase®xigases and thaumatin-like proteins
(TLP) [197,198].
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The endo- and exochitinases in plant cell wallsph&l improve plant resistance by
hydrolysing chitin, a protective polysaccharide gemr in the cell walls of the pathogens
[18,199]. The various types of chitinase known dblmave the same effects [200]: the class |
chitinase-a of rice strongly inhibits re-extensairthe hyphae and is present in mature cells in
particular. It collects at the tip of the hyphaa, tbe lateral walls and in the septa and has a
very high affinity for fungal cell walls. This enme releases a large amount of reducing sugar
from the fungal cell walls. It also ligates theelatl walls and the septa, is part of the walls of
mature cells and degrades mature chitin fibrecolmrast, the class Il chitinase-c of rice is
found essentially at the tip of the hyphae, whithigates before degrading young chitin
fibres. Thus, chitinase-a is more effective thaitirdse-c at inhibiting the growth of the
fungus [200].

The antimicrobial activity of thionins is attributdo their capacity to create pores in the
membranes of fungi by means of interactions betwdbe phospholipids and

phosphoinositides of the membrane or by decreatsiagactivity of enzymes by reducing
disulphide bonds [199].

Thaumatin-like proteins may have two modes of actihey may be specifically produced in
response to the presence of pathogenic fungi ieraio number of plants, including wheat
[201] or they may disturb the signal transductiasaade in the cell, increasing tolerance to
trichothecenes and favouring the development ofjifun the plant [198]. A trypsin-like
protease produced dy. culmorummay be one of the key enzymes in the colonisabion
plants by the fungus [202]. Indeed, the presendhisfenzyme in barley has been shown to
be correlated with the degradation of specific ®ufiroteins in infected grains [203]. The
alkaline protease produced By culmorumis also involved in the colonisation of barley and
wheat grains [204]. Peroxidases (POX) are oxidarkdel enzymes involved in the
construction of the cell walls of plant hosts (pblenxidation, suberisation, lignification)
during defence reactions against pathogenic a¢2d%. The concentration of POX increases
significantly during the milk stage in wheat antheroculated with. graminearumwhereas
this is not the case in healthy wheat [205].

Polyphenol oxidases (PPO) are involved in the diodaof quinone polyphenols (a microbial

component) and in the lignification of plant cellsiring microbial invasion [205]. The
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specific activity of PPO is maximal during the miditage in wheat and declines rapidly
thereafter [205]. Levels of PPO activity are highreresistant than in susceptible varieties and

increase following inoculation witR. graminearun]205].

One possible strategies for reducing the risk of@hyxin contaminations is the development
of more resistant transgenic crops. Three appreaeiie possible [206]: (i) transgene-
mediated control of the ability ofusariumto infect and colonise the ear, through the
overproduction of specific antifungal proteins amdtabolites, or by increasing the plant’s
own defense systems in kernel tissues; (ii) thegrgon of mycotoxin biosynthesis, or the
detoxification of mycotoxins in plants and (iii)ellevelopment of more resistant plants based
on transgenic crops engineered to produBagillus thuringiensigBt) toxin. Some Bt maize
hybrids have the potential to reduce the levelumhdnisin B produced bif. verticillioides
[206]. This effect probably results from a decreimssensitivity to one of the possible means
of ear tissue contamination: attack by insects [206]. IndeedBacillus thuringiensigBT) is
known to produce proteins toxic to insects [208j}isTstrategy has not yet been applied to

wheat.

Type | resistance is generally estimated by detangithe percentage of spikelets infected
seven to 21 days after inoculation or at maturfly. However, the number of infected
spikelets does not necessarily reflect the totalatge caused by the pathogen. The symptoms

also depend on the severity and rapidity of rarhiasion by the pathogen.

Type IlI: resistance to (kinetic) propagation of thepathogenic agenin the tissues [50].

The mechanisms involved in this type of resistaareepurely active, such as inhibition of the
translocation of deoxynivalenol [18] by an ABC (Abihding cassette) transporter protein,
the Pdr5p (pleiotropic drug resistance) [209] arr@asing the stability of cell membranes
[18]. This process limits the propagation Fdsarium culmorurmand F. graminearum[95]
from the glumes [18,26] and/or ovaries and glunoethé rachis and the pedicel [94-96]. The
endo- or exocellular migration [94-96] of the fusdeads to a series of changes in host cells,
including degeneration of the cytoplasm, organegléeg. chloroplasts) and cell wall [95,96]
by enzymes such as cellulases, xylanases and @&e$in[95,96] produced during the
penetration and colonisation of the tissues ofttheat ear [95,96]. Once attacked, susceptible
varieties respond to infection only by forming aythin wall in the periplasmic space of the

infected tissues [94]. In contrast, resistant wagereact strongly: extensive formation of a
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very thick wall located close to the infected celled of a large papilla formed by the rapid
and intense deposition of calloge1,3-glucan), lignin and other compounds [94]. Ehdays
after inoculation, defence structures are moralsulith denser cell walls, particularly in cells
adjoining contaminated cells, in the envelopesuttivar Frontana (resistant) than in those of
cultivar Agent (susceptible) [210]. The processlighification may be involved in plant
defences, establishing mechanical barriers to gathanvasion [94,210], modifying the
structure of cell walls and making them more resisto the degradative enzymes produced
by the pathogen [210]. Furthermore, lignificatioaymnhibit or reduce the diffusion of small
molecules or ions, including the mycotoxins seddig the fungal hyphae in the host cells
[94,210], and reduce the movement of nutrients ftbenhost cell to the pathogen [210]. In
addition to the lower permeability of the cell memantes in resistant genotypes, the basis of
the inhibition of deoxynivalenol translocation majso involve a lower affinity of the
membrane for deoxynivalenol [26]. This hypothesidbased largely on observations in two
types of mutant yeast [144]. One of these typemufant yeast presents a low affinity and
low cell membrane permeability for trichothecenasd in the other, the 60S ribosomal
subunit has a lower than normal affinity for theéseins. The target of deoxynivalenol is a
cytoplasmic peptidyl transferase [211]. Mammaliad &ngal cells have a modified peptidyl
transferase that is tolerant to trichothecenes J[2Iil cases of type Il resistance, the
trichothecenes seem to bind to the ribosomal 6@BIrsYy by methylation, thereby blocking
the translation of the RNA and inhibiting proteynthesis [38,43,145]. This inhibition leads
to the inhibition of peptidyl transferase activitypposing resistance to trichothecenes. In
cases in which the membrane is not permeable txydealenol, a virulence factor
promoting fungal growth [26] the propagation of fjethogen agent is restricted. Thus, three
to five days after inoculation, susceptible vaestdisplay more extensive propagation of the
fungus, higher levels of deoxynivalenol accumulat@nd fewer pathological changes in

infected tissues [94]. A hypersensitive reactioals® possible [18].

This type of resistance can be identified visualyobserving the symptoms, which reflect
the propagation of the disease from the point tddition [9]. It is also characterised by low
levels of ergosterol (an indicator of fungal bios)a$3]. The most well known variety

displaying this type of resistance is Sumai 3 [189]

Type | and Il resistances may be combined in argigenotype [18,50]. This results in a

variety tolerating the invasion of grains that tigs no symptoms on the grains [50].
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Similarly, the number of infected spikelets doe$ necessarily reflect the total amount of
damage done by the pathogen. The amount of damagedaepends on the severity and
rapidity of the invasion of the rachis by the fueghus, the three principal sources of
variation in the expression of symptoms are tharenmnent [57], the species and/or strain of
Fusarium [57,212] and factors involved in the maturation adreals that also play an
important role in the epidemiological profile ofetltisease [212]. Wheat contamination is
favoured by high levels of precipitation in the ways preceding grain maturity, but only if
the minimum temperature in the ten days followiag @mergence is sufficiently high [212].
It should be noted that these factors are variatal also depend on the fungal species
concerned [212].

It seems likely that, in certain cases, the praduacof trichothecenes (deoxynivalenol in
particular) by fungi activates their developmenypimal growth: type Il resistance) and
colonisation (type | resistance), by interferingttwithe defence response of the plants
[18,26,175,213]. The quantity of trichotheceneshia grains is controlled by the degradation

of deoxynivalenol and by the tolerance of the @dotthis toxin [18].

Two other types of resistance have recently bescodered. Both involve defence reactions
directed against trichothecenes, in which the ®gith of this toxin is blocked or its
degradation enhanced [147,214].

Type llI: resistance involving the capacity to degadedeoxynivalenol [214-216].

In some varieties (e.g. Fredrick), enzymatic systdan the detoxification (degradation) of

trichothecenes, involving the acetyltransferaselfyR09] for example, have been identified
based on a decrease in the amount of deoxynivalerolveeks after inoculation [215].

Deoxynivalenol begins to accumulate three daysr afteculation (four days according to

Savard, 2000[149]) of an ear. The concentrationthef toxin increases, peaking after six
weeks, and then decreases naturally to a condentrtitat remains constant thereafter at

maturity, harvest and during grain storage [90].

This resistance was identified by inoculating gsarh wheat, rice and triticale with a single
strain of F. graminearum[214]. This study showed that the varieties masistant to
pathogen development (lola. graminearunmbiomass, as estimated from ergosterol content)

have a higher ergosterol/deoxynivalenol ratio tltkn varieties more susceptible to the

37



1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

development of this pathogen. This implies thatghsceptible varieties are able to degrade
the deoxynivalenol produced by the large numbédumndi present.

This type 1l resistance, characterised by a higbosterol/deoxynivalenol ratio [213],

protects against symptoms due to the propagatiotheffungus. However, there may
nonetheless be a decrease in the number or wdignhios and their size [9]. This resistance
is estimated visually by measuring yield and by parng the values obtained for ears with

and without symptoms [9] but this estimation alepehds on resistance to grain infection.

Type IV: resistance involving tolerance to high coecentrations of dexoynivalenol
(apparent insensitivity to trichothecenes) [3].

Like cultivars with type Il resistance linked toetmodification of peptidyl transferase, the
target of deoxynivalenol, cultivars with type IVsistance also have a modified peptidyl
transferase [3]. This enzyme stabilises the menghraonferring greater tolerance to
trichothecenes [43]. It has also been suggestedctianges in the permeability of the cell
wall or in the signal transduction cascade in thedl inducing greater tolerance to

trichothecenes by thaumatin-like proteins can acttar this type of resistance [198].

For a given severity of disease, this resistancgeiserally estimated by a higher level of

deoxynivalenol compared to other genotypes [9].

Type V: resistance to grain infection[5].

This type of resistance results in differences ieldy despite similar levels of attack or,
conversely, little effect on yield despite the ent presence of the disease after artificial
inoculation [5,9,217]. In contrast to the otherdagpof resistance, this type of resistance may
not correspond to a physiological process, buteratt the “morphological” expression of an
interaction between various complex processessteggie of types Il, lll and IV.

4-3. Resistance to head blight according to the compogit of plant tissues

In addition to genetic resistance, the compositodnplant tissues is also a criterion of
resistance to the development and/or propagationthef fungus and its toxins. The
susceptibility of wheat cultivars is linked to tbencentration of choline in the ear at anthesis
[218], superoxide dismutase activity in the earsases of contamination by deoxynivalenol

or F. graminearun219] and the concentration of p-coumaric acice ofthe phenolic acid
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1282 precursors of lignin [210]. The quantity of thisngpound in the ear is much higher after
1283 inoculation of the glumes, envelopes and rachis Wit culmorumthan in uninoculated
1284 tissues [210]: this is thus a very important faatetermining the susceptibility of crops. The
1285 accumulation of an acetyltransferase encode@#4iil01in the endosperm and glumes of
1286 wheat confers partial protection agaifistgraminearum[220]. Similarly, feluric acid in the
1287 ears seems to be involved in resistance to eahtbilgmaize [221], although healthy and
1288 inoculated ears contain similar amounts of this poamd [210].

1289

1290 The composition of wheat and barley grains may afect contamination levels [134].
1291 Couture [134] suggested that a high gluten conteiard wheats and a high starch/protein
1292 ratio in malting barley could protect the crop agaihead blight.

1293

1294 The relative sugar content of leaves or stems heen lproposed as an indicator of
1295 susceptibility to diseases [222]. Unlike powderyidew, head blight is favoured by a low
1296 sugar content of the tissues [222]. Similar reswise obtained in studies of stem blight in
1297 maize, involving a parasitic complex consisting70f6 Fusarium graminearunf129]. The
1298 refraction index of the sap of a section of pressted is used to assess the sugar content of
1299 stem bases (Bertrand's method) and it has beennsti@mt the higher the sugar content of
1300 maize stems, the more resistant to stem blightrthize is likely to be [129Messiaen [129]
1301 also indicated thaF. graminearumis equally able to use sugars, starch and cedubss
1302 sources of carbon, and proteins, ammonium saltsittates as sources of nitrogen. Thus,
1303 Fusariummakes us of storage proteins, and degrades thewve#l8 and starch grains of
1304 infected grains [41,42].

1305

1306 Conclusion

1307 Head blight is a widespread disease with major @gmsnces for health. However, it has been
1308 little studied in the open field. Indeed, field diees of the epidemiological cycle of the disease
1309 are hindered by a major problem: identificationtleé species and strains making up the
1310 parasitic complex of the inoculum. A mean of fieeseven species, and up to nine in total
1311 [8], may be present in the same field in the sar®r.yThese species can only be identified
1312 after culture in Petri dishes and the observatibra @ollection of morphological criteria

1313 (colour, macroconidia, microconidia, ascosporefamlidospores of a strain), which requires
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the conservation of living spores, or molecularagping (which remains difficult for these

species).

In the laboratory, the various steps in the plafeédtion process and in mycotoxin production
are essentially studied from an environmental vi@wp Uncertainties remain concerning, in
particular, the necessity of inducing the developinté perithecia by exposure to ultraviolet
light, the natural climatic conditions in which sps are released (macroconidia and

ascospores) and the sensitivity of these mecharsersvironmental factors.

In the field, spore dispersal depends on climaitdrs in two ways: climatic factors affect
spore production (see section 1-2) and strongluletg spore release. However, the climatic
conditions required for spore release are uncl€his is probably due to the difficulties
involved in identifying and isolating the variouges of spore (ascospores or macroconidia).
Furthermore, the results obtained probably depenthe maturity of the spores: four periods

of release over a period of 20 to 30 days have bbsarved.

However, it seems that macroconidia are dispergeshdans of splashing during rainfall. In
contrast, the release of ascospores is only trgghby rainfall (or high humidity), resulting in
the rehydration of the perithecia after a dry peridhe true release of the ascospores occurs
several days later, depending on air humidity. Apooe release, iff. graminearumin

particular, appears to be periodic.

Although the dispersal pathways of the spores amvk (splashing for the macroconidia
and/or ascospores and wind dispersal for ascospatgsand long-distance dispersal appears
to be possible, the maximum dispersal distancetla@atontaminating potential of splashing
and wind dispersal have yet to be determined. Eurtbre, local contamination seems to
predominate in the epidemiological profile of thisedse in that two neighbouring plots

planted with the same variety may present veryetkfiit levels of contamination.

The importance of local contamination raises thestjon of the hypothetical contamination
of spikelets via the systemic route. This questiemains unanswered because as far as we
know no study has shown, microscopically, the sygtecolonisation of the spikelets and the
growth of the fungus in plant tissues (or the ingdlofity of such colonisation). Similarly, the
existence, conditions of existence and potentigdortance of such contamination have not

40



1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

been precisely determined. Conflicting results hiagen obtained and it is possible that this
route of contamination is possible only for a felan genotypes, for a few fungal species or
strains, or for a few plant-fungus interactionsddad, interactions between plants and
pathogens have been observed during infection. &elterefore presume that the virulence
characteristics of the infecting fungal strain, tesistance of the plant and the virulence-
avirulence interaction between plants and pathodetermines the capacity of the plant to be
infected by mycelium and/or spores, the speed fefction (colonisation) of the ear by the

fungal mycelium and the amount of mycotoxins présanthe grains at harvest. These

phenomena, like the production of inoculum, alspethe on climate.

The choice of variety is a practical consideratioait may affect plant infection: the date and
site of fungal penetration, the propagation raté #re intensity of the consequences of the
attack (severity of symptoms and/or amount of texinindeed, the choice of variety

determines the major mechanisms of varietal resistaactivated. However, it should be
stressed that although various types of resisthage been identified, they have not yet been
entirely elucidated. Furthermore, the types of efali resistance have not yet been
characterised for most wheat varieties, which makesfficult to compare varieties in a

particular area. Together with genetic characiesssowing date and climate determine the

date at which the crop is most susceptible to tidac

The extent of infection depends directly on theligp®f inoculum, the primary source of
which is crop residues. In the epidemiological eyaf the disease, residues probably modify
the conservation and development of the fungussaiode dispersal, with effects depending
on the amount of residue present (which dependsodrtillage methods and the preceding
crop) and their nutritive value for the pathogerd dor the plant (which also depends
essentially on the preceding crop). The high leeélsitrogen in maize residues may result in
a longer period of residue colonisationfysarium strengthening pathogen populations, and
stimulating their development. If too many cropidess are present, spore dispersal by
splashing may be physically limited by obstaclesn¥rsely, if the fungus has access to too
few residues or residues insufficiently rich fotatcomplete its life cycle and to develop, then
the fungus is likely to produce fewer spores andisperse less effectively. There is also an
interaction between these factors. Limited sda@gé methods increase the density of residues
on the surface of the soil and hence increaseuhatity of inoculum available, particularly if

the preceding crop is a potential host of the fisn(g. maize or durum wheat). Mycelium
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development and the production and dispersal ofesptherefore depend on climate and

irrigation.

Although there is broad agreement among scierdists advisers concerning the effects of
soil tillage, irrigation and preceding crop on batlsease severity and contamination by
mycotoxins, the cause of these effects remainseanclin addition, uncertainties remain
concerning the survival of the fungus and its céapdo sporulate in soil, according to soil
aeration, porosity and light penetration, all ofiethare affected by soil tillage. Similarly, the
role of the compounds generated by the degradafi@nop residues and the rate of residue
degradation — which depend on soil tillage, theitiué value of the preceding crop and the
microclimate of the residues, which itself depeadsrrigation and its relationship to mineral
composition (nitrogen, silicon, depending on theceding crop) — make it difficult to

predict the quantitative effects of soil tillageepeding crop and irrigation.

Other unanswered questions remain concerning tlectebf residue degradation on
competition between microorganisms and/or planstasce (notably by means of differences

in mineral nutrition).

The effect of mineral nutrition on disease seveaityl mycotoxin contamination, if indeed
there is one, remains unclear. The mineral balahtiee soil influences pathogen populations
and should therefore have repercussions for theldewment ofFusarium The composition

of plants, in terms of nitrogen and silicon, foraexle, probably affects the growth and
development of the fungus, although this has nenhbkexplicitly demonstrated in wheat for
several reasons: equilibrium between the variownehts, fertilisation date, link with
Fusarium foot rot etc. A canopy with unlimited mineral ntibn develops well. This
development slightly modifies the environmental @iions of the residues, which may in
turn modify the rate of residue degradation. I&tisi indeed the case, then the capacity of the

fungus to sporulate and of the spores to dispeeselra affected.

The role played by canopy density, in terms of cptgnt and weed densities, and in the
development of epidemics of the disease remaindetodetermined. Weeds may carry
Fusarium but is their role limited to that of an intermatdi host (during splashing) or do they
act as a source of inoculum? If they serve as aceoof inoculum, how many spores are

produced on weeds? Weeds probably also play aretoidiole, modifying mineral nutrition
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and/or microclimate by increasing plant populattemsity. The overall density of plants in
the canopy also depends on sowing density andiltteng capacity of the variety. Thus,
weeds may affect the number of spores producedge gpaturation and/or spore dispersal.
The uncertainties that remain probably arise atlgapart from variations in the role played
by weeds according to the type or family of weealscerned and competition with the crop:
date of emergence, density etc. (which also dependslimate). Although canopy density
(crop plus weeds) seems likely to play a role, eenot be sure of the nature or magnitude of
this effect.

It also seems clear that competition between migadsms on the leaves and ears is likely
to have an effect, but this is difficult to study the field and necessarily depends on the

fungicides used and on canopy development.

Five types of varietal resistance have been idedtifo date. They affect the penetration of
the fungus into the plant (type I), infection Kiiest(type 1), the expression of the infection
(symptoms; type lll), the consequences of infecfigqurantity of mycotoxins produced, yield;
type IV) and grain infection (type V). This compigxof plant resistance complicates any
study of several varieties. In such studies, caui® required when interpreting results
analysing the relationships between cultural pcastiand symptoms, between symptoms and
the quantities of mycotoxins produced and betwedtumal practices and the mycotoxins

produced.

In conclusion, the relationship between diseasepsyms and mycotoxin contamination is of
key importance. The conditions in which this relaship is purely qualitative and those in
which it also has a quantitative element are umcléae are to propose effective methods for
the prevention of grain contamination by toxins, mvast improve our understanding of this
relationship, especially as concerns the role ef ¢hopping system. Investigation of the
effects of crop management and crop rotation omptbéle of Fusariumspecies and strains

obtained within a cereal field, and the conditiongvhich the potential for toxin production is

expressed in agricultural environments, should tesaarch priority.
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Figure 1. Symptoms dfusariumhead blight on the external surface of wheat kanes.
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2092 Table 1: Data on environmental conditions for thedpiction of macroconidia and ascospores in therkbry,
2093 according to species. Two natural populations Fof graminearumcan be identified: Group 1 (oF.
2094  pseudograminearumhormally associated with the diseased crowns ef plants, which do not form perithecia
2095 in culture and form such structures only rarelynature, and Group 2, associated with diseasedri ggant
2096  parts, which do form perithecia- [2,223,224].
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Stage Species ]I%if):rsnlnant Range \(/);IS;nal References
Pressure | > -9 bars [75] (on maize grains)
Humidity | > 94%RH 9
Pressure > 12 bars -2 bars [225] (on agar)
Temperature| 4 to 32°C 28°C [47]
F. graminearun‘ At -10 barS, T. Optlm 20°C
group 2 (aeria') _Fljgerssg::iure At -28 barS, T. Optlm 30°C [16]
b At =55 bars, T. optim 35°C
Temperature| 20 to 30°C [23] (on osmotically
. Pressure —10 to —28 bars adjusted agar)
Mycelial
growth Accelerated by alternate periods of rainfall a[gb]
drought before ear emergence
Temperature| 20 to 30°C [23] (on osmotically
Pressure -8 to —14 bars adjusted agar)
F. culmorum At -8 bars, T. optim 20°C
Pressure At —14 bars T. optim 30°C [16]
Temperature| At —28 bars, T. optim 38°C
Maximum growth at 25°C
M. nivale Temperature] 0to 28-32°C | 18-20°C [11, 16]
E . Requires low intensity of UYVY[83], with conflicting
Initiation ~ of | - draminearun Light light (300-320<390nm) results obtained by [35].
: . group 2 (aerial) :
perithecia E roseum Depends on the strain [35,71]
' Depends on humidity and rain in spring [59]
Temperature, 5 to 35°C 29°C [2,16]
Production de perithecia Temperature, 1510 31°C 29°C [83] -
F. graminearungroup 2 (aerial) | Pressure < —50 bars, POO".1 5 bars [97] (on osmotically
' from -5 bars ' adjusted agar)
Depends on light [68]
Production of F. graminearum Temperature| 13 to 33°C Qo
ascospores | group 2 (aerial) | Light UV light required 25-28°C [2,16]
. M. nivale Temperature, < 16-18 °C 6a48°C [64]
Production o S
spores Fusarium Tempe_rature Around 10°C - [64]
Humidity Around 80% humidity
28 to 32°C
Temperature None if T°<16°C or T°>36°C [83]
F. graminearum Temperature] 16-36°C 28-32°C [47]
' . -1.4 to -31[97] (on osmotically
group 2 (aerial) | Pressure max < —50 bars bars adjusted agar)
Temperature| 20 to 30°C
Pressure —10 to —28 bars [23] (on osmotically
Temperature| 20 to 30°C adjusted agar)
. Pressure -8 to —14 bars
Production of F. culmorum . -
- Max between -15 [97] (on osmotically
macroconidia Pressure -15 bars :
and —60 bars adjusted agar)
F. graminearum 1k .
group 1 (soil) Pressure Max between -1 > 15 bars [97_] (on osmotically
and —60 bars adjusted agar)
F. avenaceum
Temperature| > 10°C 2510 30°C
Light UV light required
F. roseum Humidity RH of about 100% [16]
Favoured by water stress
M. nivale Temperaturel 1to 16 °C | 6to8°C [16]
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Table 2: Spectrum of infection of weeds WBusarium species. M: Monocotyledonous, g: grasses, D

2102 Dicotyledonous.
Weed host Fusarium .
- - - Site and form Reference
Family Latin name Common name  Species
Poaceae Mg Agropyron Wheatgrass Not indicated Not indicated [85]
F. avenaceum, F. Not indicated [64]
Liliaceae M Allium Garlic culmorum,
F. graminearum
Poaceae Mg Alopecur_us Blackgrass F. roseum In the seed [48]
myosuroidesiuds.
Poaceae Mg Avena fatud.. Wild oats F. roseum :_e3|on, SPores Or148]
eaves and seeds
Chenopodiaceae D Beta vulgaris Wild beet F. culmorum Stem base [62]
_ Capsella bursa- F. avenaceum, F. [62]
Cruciferae D : Shepherd's purseculmorum, F. poae, Stem base
pastorisL. .
F. sambucinum
Compositae D Cirsium arvensé..  Thistle F. avenaceum Stem base [62]
Lesion on straw,
Poaceae Mg DactylisL. Cocksfoot F. roseum stem base, increasfl4,48]
with N
Poaceae Mg SSIFIIilrlochloa crus- Barnyardgrass Not indicated Not indicated [85]
Poaceae Mg Festuca Fescue F. roseum VSV'Etethbase, mcreasFM]
Rubiaceae D Galium aparineL.  Cleavers F. avenaceum, F. Stem base [62]
culmorum, F. poae
Lolium multiflorum Lesion on _straw,
Poaceae Mg L Ryegrass F. roseum stem base, increasfl4,48]
' with N
F. avenaceum, F. [62]
. o culmorum,
Compositae D Matricaria spp Mayweed E. graminearum, F. poae,Stem base
F. sambucinum
Ranunculaceae D Ranunculus acris Common F. avenaceum, F. Stem base [62]
buttercup culmorum, F. poae
Ranunculaceae D Ranonculus repen<reeping F. avenaceum, F. Stem base [62]
L. buttercup culmorum
Polygonaceae D Rumex obtusifolius Dock F. avenaceum, F. Stem base [62]
culmorum
Compositae D Senecio vulgarit. Groundsel F. avenaceum, F. Stem base [62]
culmorum
Caryophyllaceae D Spergula arvensik. Corn spurrey F. sambucinum Stem base [62]
Carophyllaceae D Stellaria medid... Chickweed F. avenaceum Stem base [62]
F. avenaceum, F. [64]
Fabaceae D Trifolium Clover/trefoll culmorum, Not indicated
F. graminearum
F. avenaceum, F. [62]
Urticaceae D Urtica dioica L. Nettle culmorum, F. Stem base
sambucinum
Scrophylariaceae DVeronica persica  Speedwell F. graminearum Stem base [62]
F. avenaceum, F. poae, [62]
Violaceae D Viola avensis ield violet F. cu[morum, F. Stem base
Murray graminearum, F.
sambucinum
F. avenaceum, F. [64]
Cryophyllaceae D Dianthus Carnation culmorum, F. poae, F.  Not indicated

graminearum
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2104 Figure 2: Chemical structures of trichotecenes,dnisin B1 and zearalenone.

2105 Trichothecenes
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