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Abstract 1 

Several international research and development organisations are promoting conservation 2 

agriculture in a wide range of contexts. Conservation agriculture is based on a combination 3 

of three main principles: (i) minimal or no mechanical soil disturbance; (ii) diversified crop 4 

rotations and (iii) permanent soil cover (consisting of a growing crop or a dead mulch of crop 5 

residues). However, in the face of the diversity of practices that can be associated with 6 

conservation agriculture, of goals assigned to agricultural systems, and pedoclimatic 7 

contexts, there is still no empirical evidence about the overall performance of conservation 8 

agriculture in France. Global assessments of conservation agriculture, with the full or partial 9 

application of its principles and in different contexts, are required to provide a more 10 

comprehensive picture of the performance of such systems. We tackled these objectives 11 

simultaneously, by evaluating 31 cropping systems with the MASC® model (for Multicriteria 12 

Assessment of the Sustainability of Cropping Systems). These systems were selected to 13 

represent a wide diversity of practices, from ploughed conventional systems to crop 14 

sequences based on the full application of conservation agriculture principles. Positive 15 

interactions were observed between the key elements of conservation agriculture, resulting 16 

in better sustainability performances (particularly in terms of environmental criteria). 17 

Nevertheless, the systems most closely respecting the principles of conservation agriculture 18 

displayed several weakness, principally of a social or technical nature, in this study. Careful 19 

attention should be paid to attenuating these weaknesses. A more detailed analysis of the 20 

results also suggested that decreasing soil tillage tends to decrease the overall performance 21 

of the system unless associated with a diversification of the crop rotation.  22 
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1. Introduction 23 

After the Second World War, increasing yields was a key priority, influencing a shift in 24 

European policy towards the promotion of more intensive practices based on mechanisation 25 

and high levels of inputs such as energy, fertilisers, and pesticides (Tilman et al., 2002). 26 

These policies rapidly lead to increases in yield, but they were counterbalanced by negative 27 

environmental impacts, such as groundwater pollution, decreases in soil organic matter 28 

content, soil erosion and biodiversity losses. Agriculture is now facing an increasing number 29 

of new challenges (e.g. coping with market volatility, resource scarcity and rising demand for 30 

raw materials) placing the future of agricultural production systems, ecosystems and the 31 

services they provide to society in jeopardy (Tilman et al. 2002) 32 

 33 

In response to these challenges, farmers and agronomists have been trying to develop 34 

alternative cropping systems. Conservation agriculture (CA) is one of the innovations 35 

proposed and is among the most extensively studied new systems developed in recent 36 

decades (Scopel et al., 2012). CA systems are based on the following three principles: (i) 37 

minimal or no mechanical soil disturbance; (2) diversified crop rotations and (3) permanent 38 

soil cover (consisting of a growing crop or a dead mulch of crop residues) (FAO, 2008). 39 

Conservation agriculture has been actively promoted by several international research and 40 

development organisations, in a wide range of contexts, on the basis of specific field 41 

observations and literature reviews (Dumanski et al., 1998; Hobbs et al., 2008; Holland, 42 

2004; Lapar and Pandley, 1999; Lestrelin et al., 2012). CA has already been massively 43 

adopted on large-scale mechanised farms, particularly in Australia and Americas but its 44 

adoption remains limited in other parts of the world such as Africa and Western Europe 45 

(Derpsch et al., 2003; Lahmar, 2010). With the low level of dissemination of CA systems in 46 

these regions and the diversity of practices associated with these systems, the effective and 47 

global performances of this set of innovations remain unclear and the benefits of CA are 48 

increasingly being questioned in the scientific community (Giller et al., 2011; Peigné et al., 49 
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2009; Serpantié et al., 2009). Western European farmers adopting CA approaches often do 50 

so without completely respecting all of the principles of CA. This makes it possible for them 51 

to broaden the range of options open and to adapt the principles of CA to local conditions. 52 

However, it also greatly affects the efficiency and impact of CA systems in the short and long 53 

term (Scopel et al., 2012). In the face of the diversity of (i) practices associated with CA, (ii) 54 

goals assigned to agricultural systems, and (iii) pedoclimatic contexts, there is still no 55 

empirical evidence about the overall performance of CA in the French context (Lhamar, 56 

2010). There is therefore a crucial need to determine the reliability of this innovation with 57 

respect to conventional practices (generally involving more intensive soil tillage and less 58 

diversified crop rotations), and to clarify the benefits and drawbacks of the full or partial 59 

application of conservation agriculture in this context. 60 

To this end, CA systems should be assessed, like other innovations in agriculture, by 61 

considering economic, social and environmental aspects, including the expectations of 62 

farmers and society at large. Classical approaches based on the optimisation of economic 63 

functions, such as cost-benefit analysis, have several drawbacks in this context. These 64 

methods are based on quantitative, often monetary variables and are not entirely adequate 65 

for the realistic representation of various performances, particularly those relating to social 66 

and environmental performances (e.g. difficulty, complexity of implementation, pressure on 67 

biodiversity). As already pointed out by other authors, multicriteria evaluation methods 68 

suitable for the analysis of qualitative data may be more relevant for the sorting and 69 

classification of technical solutions when considering a broad diversity of performances 70 

(Figueira et al., 2005, Sadok et al., 2008). Multicriteria decision aid methods, such as the 71 

MASC® model (Sadok et al., 2009) should therefore be used for such assessments. In this 72 

study, using this assessment framework and performed in the context of medium-sized 73 

mechanised farms in France, we aimed to determine the extent to which the partial or 74 

complete implementation of CA principles affected the overall sustainability of cropping 75 

systems. More detailed analyses of the consequences of CA implementation, such as this 76 

one, should make it clearer which of the principles of CA contribute most (or not at all) to the 77 
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desired effects in France, and should make it possible to identify ways of improving these 78 

cropping systems as well. 79 

 80 

2. Materials and methods  81 

2.1 Presentation of the MASC model 82 

We chose to use the MASC 2.0 (for Multicriteria Assessment of the Sustainability of 83 

Cropping Systems) model (Craheix et al., 2012a; Sadok et al., 2009) in this study, for three 84 

reasons. Firstly, MASC operates at the level of the cropping system, defined as “a set of 85 

management procedures applied to a given, uniformly treated area, which may be a field or a 86 

group of fields” (Sebillotte, 1990). The cropping system includes the sequence of crops 87 

(rotation) and the various aspects of their management (soil tillage, sowing rate and date, 88 

cultivar choice, rates and dates of fertiliser application, crop protection strategy). This small 89 

scale is particularly relevant for precise assessments of the negative and positive impacts of 90 

the principles of CA, which are closely tied to the field level. Secondly, MASC provides a 91 

holistic view of the various performances of the cropping system, because it takes into 92 

account the conflicting objectives underlying the economic, social and environmental 93 

dimensions of sustainability. Thirdly, this model was also chosen because it can handle 94 

various sources of knowledge, managing both quantitative and qualitative information, in the 95 

assessment of cropping system performances. MASC was implemented within DEXi 96 

computer software (Bohanec, 2014). This software can be used to design qualitative 97 

multicriteria models breaking decision problems down into smaller, less complex sub-98 

problems formulated in terms of a hierarchy of criteria and aggregation functions.  99 

 100 

Through this formalism, MASC conceptualises the sustainability assessment problem by 101 

breaking it down into the three classical dimensions used to define sustainability (social, 102 

economic and environmental; Ikerd, 1993, United Nations, 1996). Each dimension 103 
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represents a hierarchy of sustainability objectives organised into a tree-like structure formed 104 

by 65 variables (see Figure 1). 105 

Figure 1 106 

Each variable has a number of qualitative values (or modalities), from 3 to 7, typically taking 107 

the form of a “LowMediumHigh” progression, with the addition of classes such as ”Very 108 

Low/Very High” and “Rather low/rather high” in some cases. Variables can be classified as 109 

basic criteria (i.e., input variables; 39 variables) and aggregate criteria (i.e., aggregate 110 

variables; 26 variables).  111 

 112 

Basic criteria relate to elementary concerns of sustainable development (e.g., “Profitability”, 113 

“Nitrate losses” and “Soil erosion”). These criteria are entered into the model via specific 114 

indicators proposed by the model designers. The methods for calculating or evaluating these 115 

indicators are detailed in Tables 1 and 2. Six of the 39 indicators proposed are based on 116 

direct expertise. The main factors to be taken into account in this expertise are also reported 117 

in Tables 1 and 2. Twenty indicators are based on quantitative variables obtained by 118 

calculation. For this type of indicator, quantitative values are converted into qualitative 119 

variables compatible with the DEXi software through the use of locally defined thresholds. 120 

For instance, for the criterion “Profitability”, results for the semi-net margin are based on 121 

threshold values covering the diversity of the margin observed in a region (e.g. : Very low ≤ 122 

€200 /ha ≤ Medium to low ≤ €400/ha ≤ Medium to high ≤ €600/ha). The other 13 indicators 123 

are classified as “mixed” as they can deal with both qualitative and quantitative data. These 124 

indicators are developed in DEXi software by disaggregating a basic criterion in a subtree, 125 

the inputs of which are obtained from a qualitative description of the system or by simple 126 

calculation, with the use of threshold values for conversion into qualitative inputs. 127 

In DEXi®, aggregations are performed for each criterion with "utility functions" materialised in 128 

tables completed with ‘IF-THEN’ aggregation rules, such as IF <the criterion “Expectations of 129 
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Society” is “Very low”> AND IF <the criterion “Expectations of Farmers” is “Low to medium”> 130 

THEN <the aggregate criterion “Social Sustainability” is “Very low”> (see the example in 131 

Figure 1). Each utility function can be filled in manually or semi-automatically, based on the 132 

weights applied to each criterion. All the utility functions were included in the model by the 133 

designers and can be considered to provide a well-balanced perception of sustainability, 134 

given that the weights are generally evenly distributed between criteria. However, users can 135 

modify these functions, to adapt the model to their local context and preferences (Craheix et 136 

al., 2012b). In this study, we performed assessments with the weights assigned by the 137 

designers of the MASC model (Figure 2). Using the aggregation devices of the MASC model, 138 

it is possible to rank the cropping systems according to their overall sustainability and its 139 

three dimensions (i.e. economic, social, and environmental). In DEXi software, an ordinal 140 

scale is associated with each qualitative scale (e.g. very low=1, low=2, … , very high=5). The 141 

mean and standard deviation of the ordinal scales can therefore be calculated and used to 142 

represent the results. 143 

Relative to the first version published by Sadok et al. (2009), the second version of the 144 

model, as used here, presents several improvements that helped to delimit the outline of this 145 

assessment. The designers made use of feedback from the initial users (Craheix et al., 146 

2012c) and included new criteria in the tree, to ensure that levels such as the production 147 

chain and society were better encompassed in the economic and social dimensions (e.g.: 148 

"Supply of raw materials", "New supply chain emergence" , "Sanitary quality"). In accordance 149 

with a previous adaptation of MASC 1.0 to organic farming systems (Colomb et al., 2012), a 150 

new branch, “Long-term productive capacity”, was inserted into the economic dimension of 151 

MASC 2.0. This modification makes agronomic viability a key determinant of the economic 152 

sustainability of innovative cropping systems, by taking into account both soil fertility and the 153 

control of pests and weeds. Finally, based on the DEXiPM model (Pelzer et al., 2012), the 154 

"Biodiversity Conservation" branch of the environmental dimension was profoundly modified 155 

to restrict assessment to the less mobile groups of organisms, which are heavily dependent 156 
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on crop interventions at the field scale (i.e. flora, soil macrofauna, flying insects and soil 157 

micro-organisms). These new criteria were inserted while taking advantage of the sensitivity 158 

analysis performed on the MASC model (Carpani et al., 2012; Bergez, 2013). They were 159 

designed to both maintain sensitivity of the model and to avoid structural effects leading to 160 

involuntarily increase of the weight of some criteria. 161 

Finally, the aptness of the model for evaluating the performances of CA systems was 162 

evaluated by following a three-step procedure (Bockstaller et al. 2009; 2003) based on: (i) an 163 

evaluation of the structure of the model (ii) an evaluation of the outputs generated by the 164 

model and (iii) an evaluation of the usefulness of the model in diverse situations of use. At 165 

each of these stages, we combined constructive criticism from a broad panel of experts and 166 

stakeholders involved in this study (researchers, advisors, farmers) with information 167 

published in peer-reviewed articles. This work led to a number of improvements that were 168 

directly integrated into the second version of the MASC model used in this study. 169 

2.2 Description of the cropping systems evaluated 170 

In this study, 31 cropping systems were selected from both farm-based and experimental 171 

station sites, to represent a wide diversity of practices, from ploughed systems with short 172 

crop rotations to systems in which the principles of CA were fully applied (Table 3).  173 

 174 

The description of these cropping systems was based on a list of farming practices and the 175 

yields obtained for each crop, through a combination of recorded data and expertise. The 176 

cropping systems were collected from six different regions of France (i.e. Haute-Normandie, 177 

Champagne-Ardenne, Rhône-Alpes, Centre, Aquitaine, Franche-Comté), so as to take into 178 

account various pedoclimatic contexts. In terms of economic data, we considered, for all the 179 

cropping systems assessed, the same purchase prices for inputs and selling prices for crops, 180 

based on the average over the preceding five years (i.e. 2008-2013). 181 

Table 3 182 
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We defined six types of cropping system on the basis of the extent to which the principles of 183 

CA were applied (Figure 2). These types were defined in terms of the intensity of tillage and 184 

the diversity of crops in the rotation. The permanence of soil cover, the third pillar of CA, was 185 

taken into account indirectly in this typology, by combining the information for the first two 186 

pillars. The intensity of tillage was assessed by assigning cropping systems to one of three 187 

classes: (i) ploughed cropping systems (PL), in which ploughing was performed at least one 188 

year in three in the crop rotation, (ii) cropping systems based on reduced tillage (RT), 189 

including both low-frequency ploughing (less than one year in three) and regular non-190 

inversion tillage (i.e. chisel plough, disc plough, rotary harrow) and (iii) direct seeding 191 

cropping systems (DS) with no ploughing and a very low frequency of tillage or of shallow 192 

interventions (to a depth of no more than 5 cm). Cropping systems were assigned to one of 193 

two groups for crop rotation, to distinguish between rotations with high and low levels of 194 

diversification. These two groups were defined on the basis of rotation length, the presence 195 

of cover crops, the diversity of crop families and the presence of different and distinct sowing 196 

dates in the crop sequence.  197 

Figure 1 198 

3. Results 199 

3.1 Analysis of the main sustainability criteria scores 200 

The overall sustainability scores of the various cropping system types (Figure 3) were 201 

between 3 (“rather low”) and 6 (“high”). Systems based on diversified rotations had the best 202 

overall sustainability scores, with a mean score of more than 5 (“rather high”), regardless of 203 

the tillage conditions. Diversification of the rotation thus had a stronger positive effect than 204 

decreasing soil tillage on the overall sustainability score obtained with MASC. Conversely, 205 

decreasing soil tillage only had a marked impact on the results in systems with low levels of 206 

crop diversification. In this situation (LC), only systems with superficial soil tillage only (RT-207 

LC) had overall sustainability scores above four (“medium”). Systems combining direct 208 
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seeding and a low diversification of the rotation had lower overall sustainability scores (3/7, 209 

“rather low”), close to those of conventional systems (PL-LC). 210 

Figure 3 211 

We then used the results for the three underlying dimensions of sustainability to refine our 212 

analysis. For the economic dimension of sustainability, the conventional system (PL-LC type) 213 

had a mean score of 3 (“medium”), but all the other types had mean scores of between 4 (i.e. 214 

“rather high”) and 5 (i.e. “high”). 215 

For the social dimension of sustainability, the DS type presented the worst results, 216 

particularly for low levels of diversification of the crop rotation. By contrast, the PL and RT 217 

types had better mean scores, between 4 (i.e. “high”) and 5 (i.e. “very high”). 218 

For the environmental dimension of sustainability, there was clearly a positive interaction 219 

between reducing tillage and diversifying crop rotations. For environmental sustainability, 220 

none of the cropping systems based on short and less diversified crop rotations had a score 221 

of 3 (“medium”) or more. Environmental performance was more variable for reduced tillage 222 

(RT) systems than for the other types of system. 223 

3.2 Analysis of scores for basic criteria 224 

The results of each dimension were too synthetic to account for the overall ranking on their 225 

own. A more detailed analysis of the basic criteria was therefore required to identify the 226 

major strengths and weaknesses of the cropping systems studied. Only the results for the 227 

principal basic criteria discriminating between the systems evaluated in terms of performance 228 

are presented here.  229 

More detailed results for the economic dimension (Figure 4) indicated that systems with low 230 

frequencies and shallow depths of soil tillage (i.e. the RT and DS types) were at least as 231 

profitable as ploughed systems. These systems obtained better results for the “economic 232 

efficiency” criterion, reflecting a lower economic dependence on inputs (e.g. fuel, fertiliser, 233 

pesticides). Nevertheless, reduced tillage systems and systems with only very superficial 234 
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tillage operations had worse results than ploughed systems for the criteria “weed control” and 235 

“control of insect pests and diseases”. In parallel, systems based on long diversified 236 

rotations, particularly those including legumes (as the principal or cover crop) were generally 237 

more profitable and had a higher economic efficiency than less diversified systems. These 238 

systems also had better scores for the criteria “weed control” and “sanitary quality” 239 

(estimating the sanitary risk associated with the presence of mycotoxins). However, systems 240 

combining a diversified crop rotation with reduced or very superficial soil tillage did not obtain 241 

better results than other systems for the indicator “control of insect pests and diseases”. 242 

Figure 4 243 

For the social dimension (Figure 5), we observed that reduced tillage and direct seeding 244 

systems (i.e. RT and SD) obtained better scores for the criterion “work overload” than 245 

ploughed systems. This criterion reflects the capacity of a system to decrease the number of 246 

hours of work required at busy times (e.g. sowing, weed control and harvesting). However, 247 

these systems were penalised for their small contribution to employment, due to the small 248 

number of hours of work required per hectare and per year. Our results indicated that the 249 

lower intensity of soil tillage in these systems also had a negative impact on the criteria 250 

“health risk for farmers” due to the large number of applications of phytosanitary products. 251 

The results for the “system complexity” criterion also reflected the greater difficulty for 252 

farmers to control the need for interventions in these cropping systems. 253 

 254 

Figure 5 255 

However, the deleterious effects of direct seeding systems were nevertheless smaller in 256 

more diversified crop rotations (DS-HC in Figure 3). In these rotations, the presence of a 257 

greater diversity of main and cover crops seemed to have a positive impact on the criterion 258 

“contribution to local employment”, by increasing the mean number of hours of work per year, 259 

and on the criterion “pesticide use-related health risk”, due to smaller numbers of pesticide 260 
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applications (Figure 4). The social impact of a greater diversity of crops in the rotation was 261 

nevertheless essentially negative for the criteria “system complexity” and “technical and 262 

economic monitoring time”. Indeed, the main and cover crops in these rotations, which 263 

differed from those present in less diversified rotations, were often a bit more difficult to 264 

manage (e.g. insertion and destruction of new cover crops) and the larger number of different 265 

crops also increases the time that the farmer must spend updating his technical and 266 

economic knowledge about his crops. 267 

For the environmental dimension, cropping systems with long and diversified crop rotations 268 

(HC) obtained the best scores, particularly when combined with reduced tillage (RT) or direct 269 

seeding practices (DS) (Figure 3). As indicated by the more detailed results in Figure 6, 270 

these systems had better results than ploughed systems for the criteria “soil macrofauna 271 

conservation”, “soil erosion control” and “soil organic matter content control”. However, their 272 

performances were similar to those of ploughed systems for the criterion “energy 273 

consumption” and “control of NO3 losses”. 274 

Diversified rotations performed better than less diversified systems for the criterion “energy 275 

consumption”. Thus, whereas reducing tillage decreases direct fuel energy consumption, 276 

diversifying the rotation, particularly if legumes are included, makes it possible to decrease 277 

more strongly the input of mineral nitrogen, a major contributor to the indirect consumption of 278 

energy. In this respect, SD-LC systems had the worst results, due to the use of larger 279 

amounts of synthetic nitrogen fertiliser to nourish the higher proportion of cash crops in these 280 

cropping systems. The diversification of rotations, particularly if cover crops are included, 281 

was mildly advantageous for the criteria “soil erosion control” and “control of NO3 losses”. 282 

The results obtained for the criteria “organic matter content control” and “soil macrofauna 283 

conservation” differed little between rotations as a function of the level of diversification. 284 

Figure 6 285 

4. Discussion 286 
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4.1 Variability of the results 287 

The results obtained for the aggregate and basic criteria revealed a relatively high level of 288 

variability within each of the cropping system types evaluated. This variability was no greater 289 

for conventional agriculture systems than for systems following the principles of CA more 290 

closely. This variability was sufficiently large for better overall sustainability scores to be 291 

obtained, in some situations, by ploughed systems or systems based on short rotations with 292 

low levels of diversification than by systems adhering more closely to the principles of CA. 293 

This high degree of variability highlights the importance of not focusing too heavily on the 294 

determinants used to construct this typology (intensity of soil tillage and diversification of 295 

crops in the rotation) at the expense of the broad range of technical options available in each 296 

cropping system type (e.g. choice of material, intervention dates, crop varieties). 297 

It should also be noted that soil tillage and the diversity of crops included in the rotation are 298 

not the only determinants accounting for the performance of cropping systems, in terms of 299 

basic and aggregate indices. Many other farming operations, such as the level of use of 300 

fertilisers and pesticides, and site-specific factors, including soil characteristics and local 301 

climatic conditions, can account for differences in performance within a given cropping 302 

system type (Erenstein, 2003; Knowler and Bradshaw, 2007). More precise studies are 303 

required to unravel the multiple complex interactions between management factors and to 304 

determine the precise locations and conditions most suitable for CA. 305 

It should also be borne in mind that differences in performance between years were not 306 

taken into account in this study, because the evaluations are based on an “average 307 

description” of the systems and their climatic and economic environments. In general, few 308 

scientific studies take into account the interannual variability of economic, social and 309 

environmental performances in CA systems. There is nevertheless considerable variability in 310 

performance, particularly during the transition phase, which largely determines the 311 

attractiveness of CA to farmers. In this respect, as pointed out by Giller et al. (2011; 2009), a 312 

more precise analysis of the robustness of performances in CA is a key issue that should be 313 
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addressed by researchers, to determine, in particular, the effect of climatic variability on 314 

these systems.  315 

 316 

4.2 Output evaluation and the main lessons learned 317 

As previously stated and recommended by Bockstaller et al. (2009, 2003), the a priori 318 

evaluation of the structure of the model for its use in conservation agriculture was followed by 319 

an a posteriori analysis of the results produced. Due to the immeasurable nature of 320 

sustainability and the number of indicators used to evaluate it, we were unable to perform an 321 

evaluation based on comparisons with measurements or direct observations in the field. The 322 

pertinence of the results will therefore be assessed here by comparison with published 323 

results from scientific studies focusing on the performances of conservation agriculture in 324 

similar contexts. We avoided tautological validation by paying particular attention to avoiding 325 

the citation of articles used to construct or improve the structure of the indicators. 326 

 327 

There is little scientific evidence for an economic impact of CA in the European context. 328 

Nevertheless, according to Lahmar (2010) and Scopel et al. (2012), cost savings in terms of 329 

fuel, labour and machinery remain the most important economic features of conservation 330 

agriculture, driving its adoption in Europe. These observations are consistent with the results 331 

obtained for the “economic efficiency” indicator. According to the same authors, the impact 332 

on profitability of the adoption of the principles of CA remains difficult to estimate due to the 333 

diversity of contexts and practices. Nevertheless, according to Scopel et al. (2012), these 334 

practices generally appear to be profitable when they are technically well mastered. This is 335 

an important aspect, because decreasing soil tillage tends to increase the risks of infestation 336 

with weeds (Debaeke and Orlando 1994) and necrotrophic parasites, which may survive and 337 

develop on crop residues at the soil surface (Glen and Symondson, 2003, Kreye, 2004). 338 

These observations are consistent with the results provided by MASC in this study, indicating 339 

that this short-term economic benefit could be counterbalanced by a yield decrease, due to 340 
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higher levels of infestation with weeds, pests and diseases or additional costs relating to their 341 

control. According to Lahmar (2010), such problems may lead some European farmers to 342 

prefer specific crops that are more easily managed with CA or to return to conventional 343 

practices. However, these outcomes go against the empirical experience of some of the 344 

farmers and advisors involved in this study, who reported that such systems were actually 345 

less susceptible to pests, diseases and weeds because the lower level of soil disturbance 346 

results in a greater biodiversity of natural enemies, and well adapted crop rotations prevent 347 

the build-up of pests and weeds. These observations are consistent with several other 348 

scientific findings (Derpsch et al., 2003; Palm et al., 2014; Sturz et al., 1997). Thus, although 349 

the results of this study highlight some of the weaknesses of CA cropping systems, they also 350 

identify a weakness of the MASC model, in terms of its ability to estimate the agronomic 351 

effects of biodiversity from a description of the practices employed and the context. As 352 

suggested by Bell and Morse (2008), the designers of the MASC model built their indicators 353 

from the available scientific knowledge, whilst trying to keep their use relatively simple. This 354 

probably led to the retention of rules that are too generalised and that do not precisely cover 355 

the diversity of pedoclimatic situations and techniques observed in this study. As pointed out 356 

by Médiène et al. (2011), we still have little scientific information concerning the responses of 357 

biological process to agricultural practices in a given pedoclimatic context. Thus, as 358 

highlighted by Palm et al. (2014), the complex trade-off between the services provided and 359 

the deleterious effects caused by the greater biodiversity resulting from reduced tillage and 360 

diversification of the crop rotation remains unclear. Specific studies on this topic are therefore 361 

required to identify the determinants involved and to make it possible to propose more 362 

accurate indicators. 363 

Reduced and no tillage systems had poorer performances for the social dimensions of the 364 

model than other cropping systems with more intensive tillage. DS cropping systems 365 

performed less well than other systems for the criteria “system complexity”, “health risk of 366 

pesticide use” and “contribution to local employment”. These results are basically consistent 367 
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with most of the published results concerning the performances of CA. Overall, CA is often 368 

seen as a complex set of interrelated practices that typically requires several rounds of 369 

adaptation to become fully viable. It involves learning on the part of the farmer, local 370 

adaptation, and breaking with a long-standing tradition of soil tillage and the removal of crop 371 

residues (Giller et al., 2011; Lahmar, 2010).  372 

The lack of tillage in SD cropping systems, particularly those with a low level of crop 373 

diversification in the rotation, often results in the proliferation of weeds, necessitating the 374 

more frequent application of larger amounts of herbicide by farm workers (Chapelle-Barry, 375 

2008), resulting in the exposure of these workers to a higher risk of toxicity. Moreover, the 376 

overall decrease in working time associated with reduced tillage systems, which is generally 377 

attractive for farmers, is considered to be a negative aspect in the MASC model, because it 378 

may lead to a decrease in agricultural employment in the area. This criterion draws attention 379 

to one of the potential risks of the widespread adoption of CA. However, the accuracy of this 380 

assessment is restricted to the information available at the field scale. According to Lahmar 381 

(2010), the labour saved by not tilling the soil could be diverted to other agricultural or non-382 

agricultural activities on a larger scale. This highlights how the “granularity” of the 383 

spatiotemporal scales of the cropping system is less relevant for addressing issues that are 384 

partly dependent on higher levels of organisation, such as the farm or an agricultural region 385 

(e.g. indicators “work overload” and “emergence of a new supply chain”). The results for this 386 

criterion should therefore be interpreted with caution, focusing purely on the contribution of 387 

the cropping system, everything else being equal. 388 

The main benefits in terms of the environmental dimension of cropping systems closely 389 

following CA principles (i.e. RT-HC and SD-HC) are consistent with the observations of 390 

several authors in temperate regions in Europe. Reduced and no tillage systems, particularly 391 

if the crop residues are left on the soil surface, tend to lead to an increase in carbon 392 

sequestration within the soil. In terms of biodiversity conservation, positive effects of CA on 393 

the soil macrofauna, flora and micro-organisms have also been reported by many authors 394 
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(Debaeke and Orlando, 1994; Emmerling, 2001; Peigné et al., 2009; Vian et al., 2009). CA 395 

has also been reported to limit soil erosion, by improving water infiltration, due to the higher 396 

soil organic matter content and the presence of crop residues at the soil surface. The larger 397 

population of earthworms in conservation tillage conditions is also known to favour water flow 398 

and infiltration (Frielinghaus, 2007). Decreasing the frequency of tillage decreases the direct 399 

consumption of fossil energy, but diversifying the rotation by introducing legumes appears to 400 

be a more efficient way of decreasing energy consumption. The introduction of legumes into 401 

the rotation makes it possible to decrease the total amount of nitrogen fertiliser applied. 402 

Several authors have reported a strong correlation between the total energy consumption of 403 

cropping systems and the amount of nitrogen fertiliser applied. 404 

 405 

The MASC model provided an overview of the performances of cropping systems as a 406 

function of the degree to which CA principles were applied, within the French context. As 407 

suggested by Giller et al. (2009) the assessment of a large number of cropping systems and 408 

the analysis of their performances according to whether the principles of CA were applied, 409 

fully, partially or not at all, make it easy to determine which of these principles contribute to 410 

the desired effect. The results of this study suggest that decreasing, or even abolishing 411 

tillage, one of the major symbolic pillars of CA systems, is not the most effective way to 412 

increase the overall sustainability of cropping systems. Direct seeding systems with short 413 

and undiversified rotations gave the worst sustainability results, with scores slightly lower 414 

than those for conventional systems. Conversely, the adoption of long diversified crop 415 

rotations, regardless of the soil tillage conditions, appeared to be essential for attaining a 416 

high level of overall sustainability. Therefore, rotations including diverse cash and cover 417 

crops are an essential element of CA systems, as they provide an effective way to manage 418 

pests and weeds in the absence of soil tillage. The promotion of greater biodiversity at the 419 

field level favours the better use of natural resources, a more regular distribution of labour 420 

and more diversified farm incomes (Calegari et al., 2008; Médiène et al., 2011; Scopel et al., 421 
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2012). Therefore, consistent with the assertions of most authors (Derpsch et al., 2003; 422 

Erenstein, 2003; FAO, 2008; Hobbs, 2007; Scopel et al., 2012), CA is an “holistic” package 423 

that works well only when all three pillars are applied simultaneously. 424 

4.3 End-use evaluation of the MASC model and precautions for use 425 

This study provides a form of evaluation of the model in terms of its utility in the situation of 426 

application. According to Bockstaller et al. (2003), an assessment model may lack 427 

usefulness for several reasons: a target of great relevance to potential users may have been 428 

left out, some data required for calculations may not be available or the outputs of the 429 

assessment may be incomprehensible or illegible. 430 

The positive feedback received from several of the stakeholders (e.g. researchers, extension 431 

workers and farmers) involved in this study suggests that the major preoccupations of users 432 

were adequately taken into account (Craheix et al., 2012b; Craheix et al., 2012c). Thus, the 433 

holistic approach of the MASC model, based on a sustainability assessment, provides a 434 

suitable overview of the performance of cropping systems, by taking into account 435 

simultaneously (i) the multiple objectives of the economic, social and environmental 436 

dimensions; ii) various time scales, ranging from the short term to the long term and (iii) the 437 

concerns raised at various levels, including the expectations of farmers and of society as a 438 

whole. However, although this assessment framework may be seen as very integrative and 439 

objective, caution is required in the use of such models and the interpretation of the results 440 

obtained, due to the underlying subjectivity inherent in the criteria chosen and their 441 

aggregation (Bell and Morse, 2008). Designers try to counterbalance this apparent binding 442 

framework by encouraging debate with end-users when interpreting results. Designers have 443 

also introduced flexibility by allowing users to modify both the method by which basic criteria 444 

are assessed (i.e. choice of indicators) and the weights assigned to the various criteria, so as 445 

to integrate their own preferences and visions of sustainable development into the parameter 446 

settings. Interesting results have already been reported in France, where the MASC model 447 

was used to get farmers involved in the evaluation of their cropping systems through the 448 
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discussion and modification of parameter settings (Craheix et al., 2012b). In this study 449 

cropping systems were ranked with the default version of MASC, based on a balanced 450 

perception of sustainability. It should be borne in mind that the rankings would be probably 451 

different if the weights were modified (e.g. by increasing the relative weight of the 452 

environmental dimension for instance). Therefore, according to the designers of the MASC 453 

model and as suggested by Bell and Morse (2008), the development and use of the 454 

multicriteria assessment method for sustainability requires maximum transparency and 455 

flexibility and should never be limited to the interpretation of aggregate results alone. 456 

Regarding the ease of use of the model in terms of the availability of the data required and 457 

the comprehensibility of the outputs, the ability of MASC to deal with qualitative information 458 

appeared very useful in these real-use situations. Firstly, as noted above, processing 459 

qualitative information makes it possible to use quantitative values by simply using 460 

thresholds to render them qualitative. This flexibility makes it possible for the MASC model to 461 

combine various data, such as simple measurements (e.g. yields), calculated data (e.g. 462 

semi-net margin) and empirical knowledge (e.g. physical difficulties of crop interventions) into 463 

the indicators, so as to make the best use of commonly available information. Secondly, it 464 

makes it possible to integrate the decision-maker’s own views (concerning the “system 465 

complexity” criterion, for example) into the model, as these views are not necessarily 466 

expressed through formal, quantitative models. Finally, regarding the legibility of the outputs, 467 

as suggested by Munda et al. (2005), qualitative and linguistic forms (such as “low”, 468 

“medium” or “ high”) appeared to be well understood by the stakeholders concerned as 469 

natural representations of human judgments and cognitive observations. Furthermore, 470 

qualitative decision rule-based methods are considered relevant for non-compensatory 471 

decision strategies involving the aggregation of results for different criteria (Ma, 2006), 472 

making it easier to tackle the issues of a lack of comparability and immeasurability that often 473 

underlie the dimensions of sustainability in agricultural systems (Sadok et al., 2008). 474 

Nevertheless, the homogenisation of calculated variables into qualitative variables, which are 475 
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by nature discrete, together with the classification of the systems studied into large classes, 476 

may lead to marked differences in judgement concerning performances that are actually 477 

relatively similar. The choice of the thresholds separating qualitative classes for particular 478 

criteria was adapted here so as to minimise this risk. 479 

 480 

5. Conclusion 481 

Assessing the relevance of innovations, such as CA, remains a difficult exercise, because 482 

several objectives, some of which conflict, and criteria of different natures must be taken into 483 

account. Multicriteria decision aid models, such as MASC®, have been developed to 484 

overcome these apparent difficulties by providing a holistic approach to the problem based 485 

on an assessment of the sustainability of cropping systems. The use of this model in the 486 

French context provides a more comprehensive assessment of the various performances of 487 

CA, through comparisons with conventional systems and intermediate systems in which the 488 

principles of CA are applied only partially. The results obtained thus provide a better 489 

perception of the overall relevance of CA and improve our understanding of the principles 490 

contributing to the desired effect. 491 

Firstly, the results of this study indicate that CA is a promising alternative to conventional 492 

practices that can improve the sustainability of cropping systems in France, provided that it is 493 

applied in full. Secondly, a detailed analysis of intermediate systems partially applying the 494 

principles of CA revealed that there was a positive interaction between the reduction of tillage 495 

and the diversification of the crop rotation for the environmental dimension. However, 496 

diversification of the crop rotation was found to be the best way to increase the overall 497 

sustainability of cropping systems. Cropping systems involving diversified rotations achieved 498 

good results, regardless of the tillage regime, whereas direct seeding-based systems not 499 

coupled with a diversified rotation had the lowest sustainability scores. Thus, decreasing soil 500 
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tillage appeared to be less effective in this study than diversifying the crop rotation, and 501 

should therefore not be applied in isolation. 502 

According to these findings, CA, as a holistic package, is an interesting way to improve the 503 

sustainability of agricultural systems in the French context. However, when this strategy is 504 

preferred, the social and agronomic difficulties reported in this study should be taken into 505 

account. A gradual transition from ploughed conventional systems towards CA systems 506 

should be encouraged, with the early consideration of a specific cover crop management 507 

strategy involving crops from different families. Finally, the results of this study require 508 

confirmation and completion with field measurements, for a larger number of more diverse 509 

cropping systems, with the evaluation of CA over larger scales (the farm and regional 510 

scales). Furthermore, the validity of our findings could not be easily extended to areas where 511 

AC is more widespread and where the conditions of soil and climate, including drought 512 

intensity and frequency, are different from those of Western Europe. 513 
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Table captions 

Table 1: Methods for evaluating the basic criteria of the economic and social dimensions of 

the MASC model: QT - indicators based on quantitative and calculated data; QL - indicators 

based on expert evaluation through the use of qualitative information; ST - indicators based 

on a subtree design, using DEXi software to combine qualitative expertise and quantitative 

data through calculation. For these indicators, weights (expressed in %) are assigned to the 

factors considered. 

Table 2: Methods for evaluating basic criteria for the environmental dimension of the MASC 

model: QT - indicators based on quantitative and calculated data; QL - indicators based on 

expert evaluation through the use qualitative information; ST - indicators based on a subtree 

design, using DEXi software to combine qualitative expertise and quantitative data through 

calculation. For these indicators, weights (expressed in %) are assigned to each of the 

factors considered. 

Table 3: Simplified presentation of the cropping systems studied in each region. Each line of 

this table corresponds to the description of one of the 31 cropping systems assessed. A code 

is assigned to each cropping system to specify its affiliation a given type (DS: direct seeding, 

RT: reduced tillage, PL: frequent use of ploughing, LC: Low diversification of crop rotations, 

HC: High diversification of crop rotations). For the cultivated crops: AFA alfalfa, FAB faba 

bean, FES fescue, HP hemp, FF fibre flax, MAG grain maize, MAS silage maize, OR oilseed 

rape, SBEET sugarbeet, SOY soybean, SPEA spring pea, SUN sunflower, TRIT triticale, WB 

winter barley, WPEA winter pea, WW winter wheat. The cover crops are indicated in 

brackets: (Must.) mustard, (mgl) mixture of grass and legumes, (b.wheat) buckwheat, (fab) 

faba bean, (oat) oat, (rye) rye. For the origin of the observations: F on-farm observations, S 

for observations at experimental stations. 

 

 

 



28 
 

Figure captions 

Figure 1: Sustainability criteria information processing and aggregation in the MASC 2.0 

decision tree. Numerical values in the decision tree displayed in red boxes represent the 

weights (expressed in %) proposed by the designers of the MASC model. 

Figure 2: Typology of the cropping systems defined by expertise to qualify the degree to 

which CA principles are implemented. DS: direct seeding, RT: reduced tillage, PL: frequent 

use of ploughing, LC: Low diversification of crop rotations, HC: High diversification of the 

crop rotations. 

Figure 3: Mean score (and standard deviation), by cropping system type, for the most 

aggregated criterion (i.e. overall sustainability) and for the three dimensions of sustainability. 

Cropping system types characterised by a “Low diversification of crop rotations” are 

presented in light grey, and types with a “High diversification of crop rotations” are presented 

in dark grey. 

Figure 4: Mean score (and standard deviation) by cropping system type for criteria in the 

economic branch of the MASC model. PL: Frequent use of ploughing, RT: reduced tillage, 

DS: direct seeding. Types characterised by a “Low diversification of crop rotations” are 

presented in light grey, and types with a “High diversification of crop rotations” are presented 

in dark grey. 

Figure 5: Mean score (and standard deviation) by cropping system type, for the criteria in the 

social branch of the MASC model. PL: Frequent use of ploughing, RT: reduced tillage, DS: 

direct seeding. Cropping system types characterised by a “Low diversification of crop 

rotations” are presented in light grey, and types with a “High diversification of crop rotations” 

are presented in dark grey. 

Figure 6: Mean score (and standard deviation), by cropping system type, for some of the 

criteria in the environmental branch of the MASC model. PL: Frequent use of ploughing, RT: 

reduced tillage, DS: direct seeding. Cropping system types characterised by a “Low 

diversification of crop rotations” are presented in light grey, and types with a “High 

diversification of crop rotations” are presented in dark grey. 
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Table 1 

 

 Basic criteria Mode Reference methods or main factors considered 

E
c

o
n

o
m
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Profitability QT 
Semi-net margin, considering subsidies and mechanical cost 

(€ .ha
-1

.year
-1

). 

Subsidies Independency QT Mean ratio of semi-net margin to subsidies (% .ha
-1

.year
-1

). 

Economic efficiency QT Mean ratio of semi-net margin to operational costs (% .ha
-1

.year
-1

). 

Specific equipment needs QL Additional costs to purchase specific machinery. 

Soil compaction ST 

Regeneration factors (60%): climate effects (13%); tillage effects (13%); 

biological effects (13%) / Damaging factors (40%): harvest in wet climatic 

conditions (60%) specific equipment to reduce soil compaction (40%). 

Soil acid-base status ST 
Initial soil pH (35%); buffering capacity of soil (15%); basic fertiliser effects 

(25%); effects of acidifying practices (25%). 

P-K fertility ST 
Initial soil fertility (35%); soil buffer capacity (15%); nutrient balance (33%); 

organic matter recycling (16%). 

Control of insect pests and 

diseases 
ST 

Diversity of the families of crops (50%); management of harvest residues 

(30%); effects of genetic, chemical and biological control (20%). 

Weed control ST 
Diversity of crop sowing dates (50%); ploughing effect (20%); effects of 

mechanical, chemical and cover control (30%). 

Technological quality QL 
Risk of failure to meet the level of quality required by the agro-food 

production chain. 

Sanitary quality QT 

Mean, over the entire rotation, of annual indices describing the 

contamination risk of cereals by mycotoxins (taking into account the 

previous crop, the management of harvest residues and varietal 

susceptibility). 

New Supply Chain emergence  QT Proportion, in the rotation, of crops marginally represented in the region. 
    

S
o
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l 
d
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e

n
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Workload distribution QL 
Expertise concerning the distribution of the most time-consuming 

interventions (e.g. ploughing, sowing, harvesting). 

Physical difficulty QL Expertise considering the physical difficulty of each crop intervention. 

Pesticide use risk QT Annual mean of chemical interventions classified as toxic (ha
-1

.year
-1

). 

System complexity QT 

Annual mean of indices defined with farms & advisors to consider the main 

difficulties in crop management (i.e. presence of cover crop, mechanical 

weeding) (i. year
-1

). 

Technical monitoring QL 

Estimation of the effort required by a farmer to keep up to date with 

knowledge about the technical and economic environment of each crop 

(number of different crops in the rotation). 

Employment contribution QT 
Mean annual labour time (h. ha

-1
.year

-1
). 

Supply of raw material QT Mean difference between the observed yields of each crop and those 

achieved in intensive production systems in the region (%.ha
-1

.year
-1

). 
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Table 2 

 

 Basic criteria Mode Reference methods or main factors considered 

E
n

v
ir

o
n

m
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n

ta
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n

s
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n
 

Pesticides (surface water) QT I-PHYSW indicator in the Indigo method (Bockstaller et al., 1997). 

Pesticides (ground water) QT I-PHYGW indicator in the Indigo method (Bockstaller et al., 1997). 

NO3 Losses QT I-NO3 indicator in the Indigo method (Bockstaller et al., 1997). 

Phosphorus losses ST Initial soil phosphorus content (20%), soil erosion (30%), mean amount of 

phosphorus provided (30%) and method of incorporation (20%). 

NH3 emissions QT I-NH3 indicator in the Indigo method (Bockstaller et al., 1997). 

N2O emissions QT I-NO2 indicator in the Indigo method (Bockstaller et al., 1997). 

Pesticide emissions QT I-PHYair indicator in the Indigo method (Bockstaller et al., 1997). 

Soil Erosion ST Soil cover in period of risk (55%); Tillage effects (35%); Soil compaction 

(10%). 

Organic matter content QT I-MO indicator in the Indigo method (Bockstaller et al.,1997). 

Accumulation of toxic. 

elements 
QL Expertise based on the presence/absence of acidification risks and 

pollution with heavy metals or organic micropollutants. 

Dry period irrigation needs QT Water consumption for irrigation during critical periods (m
3
.ha

-1
.year

-1
). 

Dependence on water ST Crop water demands (50%); Proportion of crop water demands covered by 

irrigation (50%). 

Energy consumption QT I-EN indicator in the Indigo method (Bockstaller et al.,1997). 

Energy efficiency QT Mean ratio between energy consumption of each crop and energy 

provided by harvested products (Mj
-1

.Mj
-1

/ha/year). 

Phosphorus conservation QT Mean phosphate rock consumption (kg P2O5.ha
-1

.year
-1

). 

Soil macrofauna ST Tillage effects (40%); Effects of added organic matter (35%); TFLi: 

Treatment Frequency Index (Gravesen, 2003) of all insecticides (25%). 

Flying insects ST Diversity of the crop families (50%); TFLi: Treatment Frequency Index 

(Gravesen, 2003) of all insecticides (50%). 

Flora abundance ST Inverse of the result provided by the criterion “weed control”. 

Flora diversity ST Diversity of sowing dates (50%); use of broad-spectrum herbicides (35%); 

field margin management (15%). 

 
Soil micro-organisms ST Diversity of crop families (25%); Effects of added organic matter (50%); 

TFIt: Treatment Frequency Index (Gravesen, 2003) of all pesticides (25%). 
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Table 3 

 

Type Crop sequence Region Origin Soil 
Frequency 

of 

ploughing 

PL-LC 

MAG-WW (Must.) Haute-Normandie F Deep silty soil 1/2 

OR-WW-WPEA-WW-SB Haute-Normandie F Deep silty soil 2/5 

OR-WW-WB Champagne-Ardenne F Calcareous clay 1/3 

MAG-WW Aquitaine F Sandy clay 2/2 

MAG-WW Aquitaine F Sandy silt 2/2 

PL-HC 

(Must.)SBEET-WW-(Must.)MAG-WW-(Must.)SB 

Haute-Normandie 

F 

Deep silty soil 

5/5 

OR-WW-FAB-WW-(Must.)MAG-WW F 2/6 

OR-WW-HP-FES-OR-PEA-WW-WB F 8/8 

OR-WW-(mgl)SB-(mgl)SUN-WW-(mgl)SB 

Champagne-Ardenne 

F Calcareous clay  3/6 

OR-WW-(mgl)WB-(mgl)PEA-WW(mgl)SBEET-

SB-(mgl)SPEA-(mgl) 
F 

Chalk 

8/8 

OR-WW-(mgl)SB-(mgl)-SBEET-WW-(mgl)SB- F 3/6 

OR-(mgl)-WB-SBEET-AFA-AFA-WW-(mgl)SB-

(mgl)SPEA 
F 3/8 

AFA-AFA-AFA-MAI-SOY-WW-(rye)SOY-WW 
Rhône-Alpes  

(organic farming) 
S Deep sandy silt 6/8 

RT-LC 

OR-WW-SB-WW-FAB Haute-Normandie F Deep silty soil 1/5 

OR-WW-WB-WPEA Champagne -Ardenne F Calcareous clay  1/4 

OR-WW-WB Centre S Calcareous clay  0/3 

RT-HC 

FES-FES-WW-WB-FAB-WW-HP-WW-SB Haute-Normandie F Deep silty soil 0/9 

OR-WW-(Must.)FF-WW-WB-(Must.)SPEA-WW-

(Must.)SB 
Haute-Normandie F Deep silty soil 0/8 

OR-WW-(must.)FAB-WW-(must.)SPEA-WW Haute-Normandie F Deep silty soil 0/6 

AFA-AFA-AFA-MAI-SOY-WW-(rye)SOY-WW 
Rhône-Alpes 

(organic farming) 
S Deep sandy silt 0/8 

OR-WW-WB-SUN-WW Centre S Silt loam 0/5 

DS-LC 
OR-WW Franche-Comté F Calcareous clay  0/2 

OR-WW-WB Centre S Calcareous clay  0/3 

(mgl) MAG-WW Aquitaine F Sandy silt 0/2 

DS-HC 

OR-WW-(mgl)SOY Franche-Comté F Calcareous clay  0/3 

OR-WW-(oat)SOY-WW Franche-Comté F Calcareous clay  0/4 

OR-WW-(mgl)SB-(Must.)SPEA Champagne -Ardenne F Chalk 0/4 

AFA-AFA-AFA-MAI-(oat)SOY-WW-(rye)SOY-

WW 

Rhône-Alpes 

(organic farming) 
S Sandy clay 0/8 

OR-(fab)WW-WB-(rye)SUN-WW-(b.wheat)WPEA Centre S Calcareous clay  0/6 

(mgl)MAG-(mgl)MAE-TRIT Aquitaine F Sandy clay 0/3 

OR-WW-(mgl)SUN-WW-(mgl)FAB Centre S Silt loam 0/5 
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