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The Generalized Simpson’s Entropy is a Measure of
Biodiversity

Michael Grabchak1, Eric Marcon2*, Gabriel Lang3, Zhiyi Zhang1

Abstract
Modern measures of diversity satisfy reasonable axioms, are parameterized to produce diversity profiles, come with an effective
number of species to simplify their interpretation, and estimators to apply them to real data. Generalized Simpson’s entropy has
all of these features and can be used as a measure of biodiversity. Moreover, unlike most commonly used diversity indices, it has
unbiased estimator, which allows for robust estimation of the diversity of poorly sampled, rich communities.
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1. Introduction

Many indices of biodiversity have been proposed based
on different definitions of diversity and different visions of
the biological aspects to address (Ricotta, 2005). Indeed,

measuring diversity requires both a robust theoretical
framework (Patil and Taillie, 1982) and empirical tech-
niques to effectively estimate it (Beck and Schwanghart,
2010). We focus on species-neutral diversity, i.e. the
diversity of the distribution of species, ignoring their
features. Classical measures of this type of diversity
include richness (the number of species), Shannon’s en-
tropy (Shannon, 1948), and Simpson’s index (Simpson,
1949).

Since one index is generally insufficent to fully capture
the diversity of a community, modern measures of diver-
sity are parameterizable, allowing the user to give more
or less relative importance to rare versus frequent species
(Rényi, 1961). Further, they can be expressed as an
effective number of species (Hill, 1973), which allows for
an easy interpretation of their value (Jost, 2006). Among
the most popular of these are HCDT entropy (Havrda
and Charvát, 1967; Daróczy, 1970; Tsallis, 1988), which
includes richness, Simpson’s index, and Shannon’s en-
tropy as special cases, Rényi’s entropy (Rényi, 1961), and
the less-used Hurlbert’s index (Hurlbert, 1971). These
indices can be used to estimate the diversity of a commu-
nity and then to plot its value against the parameter that
controls the weight of rare species to obtain a diversity
profile (Hill, 1973). The profiles of two communities can
be compared to provide a partial order of their diver-
sity. If the profiles do not cross, one community can be
declared more diverse than the other (Tothmeresz, 1995).

HCDT entropy has many desirable properties (Jost,
2006; Marcon et al., 2014) but, despite recent progress
(Chao and Jost, 2015), it cannot be accurately estimated
when the communities are insufficiently sampled (Marcon,
2015). Rényi’s entropy is related to HCDT entropy by a
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straightforward transformation: the natural logarithm
of the deformed exponential (Marcon et al., 2014). Its
properties are very similar and, hence, it will not be
treated here. Hurlbert’s index has a simple practical
interpretation and can be estimated with no bias, but
only up to when its parameter is less than the sample
size.

We introduce generalized Simpson’s entropy as a mea-
sure of biodiversity for its particular performance when
it is used to estimate the diversity of small samples of
hyper-diverse communities. The generalized Simpson’s
entropy ζr is parameterized: increasing its parameter r
gives more importance to rare species. It has a simple in-
terpretation, specifically, in a species accumulation curve,
ζr is the probability that the individual sampled at rank
r +1 belongs to a new species. We show that ζr is a valid
measure of diversity, satisfying the axioms established
in the literature (Rényi, 1961; Patil and Taillie, 1982).
We then show how to estimate ζr with no bias and how
to construct confidence intervals, which can be used to
compare the diversities of different communities. Next,
we derive a simple formula for the corresponding effective
number of species and discuss its estimation. Finally,
we compare it to HCDT entropy and Hurlbert’s index
on a real-world example of under-sampled tropical forest
to illustrate its decisive advantage when applied to this
type of data.

2. Methods

2.1 Generalized Simpson’s Entropy
Let `1, `2, . . . , `S be the species in a community, and let ps
be the proportion of individuals belonging to species `s.
Necessarily, 0≤ ps ≤ 1 and ∑

S
s=1 ps = 1. We can interpret

ps as the probability of seeing an individual of species
`s when sampling one individual from this community.
Generalized Simpson’s entropy is a family of diversity
indices defined by

ζr =
S

∑
k=1

pk(1− pk)
r, r = 1,2, . . . . (1)

The parameter r is called the order of ζr. Note that, as
r increases, ζr gives more relative weight to rare species
than to more common ones. Note further that 0≤ ζr ≤ 1.
In fact ζr is the probability that the (r +1)st observation
will be of a species that has not been observed before.

Generalized Simpson’s entropy was introduced as
part of a larger class in Zhang and Zhou (2010) and
was further studied in Zhang and Grabchak (2014). The
name comes from the fact that 1− ζ1 corresponds to
Simpson’s index as defined in Simpson (1949). A major
advantage to working with this family is that there exists
an unbiased estimator of ζr whenever r is strictly less
than the sample size. While a similar result holds for
Hurlbert’s index, this is not the case with most popular

diversity indices including HCDT entropy and Rényi’s
entropy, which do not have unbiased estimators. Now,
we turn to the question of when and why generalized
Simpson’s entropy is a good measure of diversity.

2.2 Axioms for a measure of diversity
Historically, measures of diversity have been defined
as functions mapping the proportions p1, p2, . . . , pS into
the real line, and satisfying certain axioms. We write
H(p1, p2, . . . , pS) to denote a generic function of this type.
We begin with three of the most commonly assumed ax-
ioms. The first two are from Rényi (1961) after Faddeev
(1956).

Axiom 1 (Symmetry). H(p1, p2, . . . , pS) must be a sym-
metric function of its variables.

This means that no species can have a particular role
in the measure.

Axiom 2 (Continuity). H(p1, p2, . . . , pS) must be a con-
tinuous function of the vector (p1, p2, . . . , pS).

This ensures that a small change in probabilities
yields a small change in the measure. In particular, two
communities differing by a species with a probability
very close to 0 have almost the same diversity.

Axiom 3 (Evenness). For a fixed number of species
S, the maximum diversity is achieved when all species
probabilities are equal, i.e.,

H(p1, p2, . . . , pS)≤ H(1/S,1/S, . . . ,1/S).

This axiom was called evenness by Gregorius (2014).
It means that the most diverse community is the one
where all species have the same proportions.

We will give a more restrictive version of this axiom.
Toward this end, following Patil and Taillie (1982), we
define a transfer of probability. This is an operation that
consists of taking two species with ps < pt and modifying
these probabilities to increase ps by h > 0 and decrease
pt by h, such that we still have ps + h≤ pt −h. In other
words, some individuals of a more common species are
replaced by ones of a less common species, but in such a
way that the order of the two species does not change.

Axiom 4 (Principle of transfers). Any transfer of prob-
ability must increase diversity.

The principle of transfers comes from the literature
of inequality (Dalton, 1920). It is clear that this axiom
is stronger than the axiom of evenness: if any transfer
increases diversity, then, necessarily, the maximum value
is reached when no more transfer is possible, i.e. when
all proportions are equal.

Generalized Simpson’s entropy belongs to an impor-
tant class of diversity indices, which are called trace-form
entropies in statistical physics and dichotomous diversity
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indices in Patil and Taillie (1982). This class consists of
indices of the form H(p1, p2, . . . , pS) = ∑

S
s=1 psI(ps), where

I(p) is called the information function. Indices of this
type were studied extensively in Patil and Taillie (1982)
and Gregorius (2014). I(p) defines the amount of infor-
mation (Shannon, 1948), or uncertainty (Rényi, 1961), or
surprise (Marcon and Hérault, 2015). All of these terms
can be taken as synonyms; they get at the idea that I(p)
measures the rarity of individuals from a species with
proportion p (Patil and Taillie, 1982). This discussion
leads to the following axiom.

Axiom 5 (Decreasing information). I(p) must be a de-
creasing function of p on the interval (0,1] and I(1) = 0.

This can be interpreted to mean that observing an
individual from an abundant species brings less informa-
tion than observing one from a rare species, and if an
individual is observed from a species that has probability
1, then this observation brings no information at all.

Patil and Taillie (1982) showed that Axiom 5 ensures
that adding a new species increases diversity. They also
showed that both the principle of transfers and the axiom
of decreasing information are satisfied if the function
g(p) = pI(p) is concave on the interval [0,1]. However,
for generalized Simpson’s entropy,

g(p) = p(1− p)r, p ∈ [0,1] (2)

is not a concave function of p if r > 1. In fact, for r > 1
generalized Simpson’s entropy does not satisfy the prin-
ciple of transfers. For this reason Gregorius (2014), in a
study of many different entropies, did not retain it. How-
ever, we will show that generalized Simpson’s entropies
satisfy a weaker version of the principle of transfers, and
are, nevertheless, useful measures of diversity.

2.3 The generalized Simpson’s entropy is a measure
of diversity

It is easy to see that generalized Simpson’s entropy always
satisfies Axioms 1, 2 and 5, but, as we have discussed, it
does not satisfy Axiom 4. However, we will show that it
satisfies a weak version of it and that it satisfies Axiom 3
for a limited, but wide range of orders r.

Axiom 6 (Weak principle of transfers). Any transfer
of probability must increase diversity as long as the sum
of the probabilities of the concerned species is below a
certain threshold, i.e., the principle of transfers holds so
long as

ps + pt ≤ T for some T ∈ (0,1].

We now give our results about the properties of gen-
eralized Simpson’s entropy. The proofs are in Appendix
1.

Proposition 1. Generalized Simpson’s entropy of order
r respects the weak principle of transfers with T = 2

r+1 .

Proposition 2. Generalized Simpson’s entropy of order
r respects the evenness axiom if r ≤ S−1.

In light of Proposition 2, we will limit the order to
r = 1,2, . . . ,(S− 1). In this case, generalized Simpson’s
entropy satisfies Axioms 1-3, and can be regarded as
a measure of diversity. Moreover, it satisfies Axiom 5
and the weak principle of transfers up to T = 2

r+1 ≥
2
S .

Thus, a transfer of probability increases diversity, except
between very abundant species.

2.4 Estimation
In practice, the proportions, (p1, p2, . . . , pS), are unknown
and, hence, the value of generalized Simpson’s entropy
as well as any other diversity index is unknown and can
only be estimated from data. Toward this end, assume
that we have a random sample of n individuals from a
given community. Let ns be the number of individuals
sampled from species `s, and note that n = ∑

S
s=1 ns. We

can estimate ps by p̂s = ns/n.
A naive estimator of ζr is given by the so-called “plug-

in” estimator ∑
S
s=1 p̂s(1− p̂s)

r. Unfortunately, this may
have quite a bit of bias. However, for 1≤ r ≤ (n−1), an
unbiased estimator of ζr exists and is given by

Zr =
nr+1[n− r−1]!

n!

S

∑
s=1

p̂s

r−1

∏
j=0

(
1− p̂s−

j
n

)
, (3)

see Zhang and Zhou (2010). There it is shown that Zr is a
uniformly minimum variance unbiased estimator (umvue)
for ζr when 1≤ r ≤ (n−1).

Note that the sum in (3) ranges over all of the species
in the community. This may appear impractical since we
generally do not know the value of S. However, for any
species `s that is not observed in our sample we have p̂s =
0, and we do not need to include it in the sum. Assume
that we have observed K ≤ S different species in the
sample and that these species are `′1, `

′
2, . . . , `

′
K . For each

s = 1,2, . . . ,K, let n′s be the number of individuals from
species `′s sampled, and let p̂′s = n′s/n be the estimated
proportion of species `′s. In this case we can write

Zr =
nr+1[n− r−1]!

n!

K

∑
s=1

p̂′s
r−1

∏
j=0

(
1− p̂′s−

j
n

)
. (4)

With a few simple algebraic steps, we can rewrite this in
the form

Zr =
K

∑
s=1

p̂′s
r

∏
j=1

(
1− n′s−1

n− j

)
, (5)

which we have found to be more tractable for computa-
tional purposes.

In Zhang and Zhou (2010) and Zhang and Grabchak
(2014) it is shown that Zr is consistent and asymptotically
normal. These facts can be used to construct asymptotic
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confidence intervals. Toward this end define the (K−
1)× (K−1) dimensional matrix given by

Σ̂ =



p̂′1(1− p̂′1) −p̂′1 p̂′2 · · · −p̂′1 p̂′K−1

−p̂′2 p̂′1 p̂′2(1− p̂′2) · · · −p̂′2 p̂′K−1

· · · · · · · · · · · ·

−p̂′K−1 p̂′1 −p̂′K−1 p′2 · · · p̂′K−1(1− p̂′K−1)


and the (K−1) dimensional column vector ĥr, where for
each j = 1, · · · ,(K−1) the jth component of ĥr is given
by(
1− p̂′j

)r
+ r p̂′j

(
1− p̂′j

)r−1−
(
1− p̂′K

)r− r p̂′K
(
1− p̂′K

)r−1
.

When r ≤ (S−1) and there exists at least one s with
ps 6= 1/S (i.e. we do not have a uniform distribution) then
an asymptotic (1−α)100% confidence interval for ζr is
given by

Zr± zα/2
σ̂r√

n
,

where

σ̂r =

√
ĥT

r Σ̂ĥr (6)

is the estimated standard deviation, ĥT
r is the transpose

of ĥr, and zα/2 is a number satisfying P(Z > zα/2) = α/2
where Z ∼ N(0,1) is a standard normal random variable.
Methods for evaluating Zr and σ̂r are available in the
package EntropyEstimation (Cao and Grabchak, 2014)
for R (R Development Core Team, 2016). For details
about the confidence interval see Appendix 1.

2.5 Comparing distributions
In many situations it is important not only to estimate
the diversity of one community, but to compare the
diversities of two different communities. To do this we
discuss the construction of confidence intervals for the
difference between the generalized Simpson’s entropies
of two communities.

Fix an order r and let ζ
(1)
r and ζ

(2)
r be the generalized

Simpson’s entropies of the first and second community
respectively. To estimate these assume that we have
a random sample of size n1 from the first community
and a random sample of size n2 from the second com-
munity. Assume further that these two samples are
independent of each other and that r ≤ (min{n1,n2}−1),
where min{n1,n2} is the minimum of n1 and n2. If both
communities satisfy the conditions given in Section 2.4,
an asymptotic (1−α)100% confidence interval for the

difference ζ
(1)
r −ζ

(2)
r is given by

[
Z(1)

r −Z(2)
r

]
± zα/2

√√√√[σ̂ (1)
r

]2

n1
+

[
σ̂

(2)
r

]2

n2
,

where Z(1)
r and Z(2)

r are the estimates of ζ
(1)
r and ζ

(2)
r and

σ̂
(1)
r and σ̂

(2)
r are the estimated standard deviations as

in (6).
In practice, it is often not enough to look at only one

diversity index. For this reason we may want to look
at an entire profile of generalized Simpson’s entropies.
This can be done as follows. Fix any positive integer
v≤ (min{n1,n2}−1). For each r = 1,2, . . . ,v we can esti-

mate Z(1)
r , Z(2)

r , and the corresponding confidence interval.
Looking at these for all values of r gives a pointwise con-
fidence envelop. We can now see if the two communities
have statistically significant differences in the amount of
diversity by seeing if zero is in the envelop or not. If it
is generally in the envelop then the differences are not
significant, and if it is generally outside of the envelop
then the differences are significant.

2.6 Effective number of species
The effective number of species (Hill, 1973) is the num-
ber of equiprobable species that would yield the same
diversity as the data (Gregorius, 1991). It is a measure of
diversity sensu sticto (Jost, 2006). We will write entropy
for ζr and diversity for its effective number, which we
denote by rDζ . To derive rDζ we assume

ζr =

rDζ

∑
s=1

1
rDζ

(
1− 1

rDζ

)r

, (7)

and then simple algebra yields

rDζ =
1

1−ζ
1
r

r

. (8)

Note that (7) assumes that rDζ is an integer, while in
(8) it is generally not an integer. This is not an issue
because (7) is just a formalism used to derive (8). A
more developed argumentation can be found in Gregorius
(2014), Appendix B.

Since the function f (t) = 1/(1−t1/r), t ∈ [0,1] is mono-
tonely increasing, we can transforms confidence intervals
for ζr into confidence intervals for rDζ as follows. If
(L,U) is a (1−α)100% confidence interval for ζr then
( f (L), f (U)) is a (1−α)100% confidence interval for rDζ .
It is important to note that any inference based on such
confidence intervals for rDζ is equivalent to inference
based on the original confidence interval for ζr.

3. Example Data and Results

In this section we apply our methodology to estimate
and compare the diversities of two 1-ha plots (#6 and
#18) of tropical forest in the experimental forest of
Paracou, French Guiana (Gourlet-Fleury et al., 2004).
Respectively 641 and 483 trees with diameter at breast
height over 10 cm were inventoried. The data is available
in the entropart package for R.
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(a) Generalized Simpson’s entropy profile.
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(b) Generalized Simpson’s diversity profile.

Figure 1. Generalized Simpson’s (a) entropy and (b) diversity profiles of Paracou plots 6 (solid, green lines) and 18
(dotted, red lines). The bold lines represent the estimated values, surrounded by their 95% confidence envelopes.

0 50 100 150 200 250

0.
00

0.
04

0.
08

0.
12

Order of Diversity

D
iff

er
en

ce
 o

f e
nt

ro
py

Figure 2. Difference between the generalized Simpson’s
entropy of plots 6 and 18 with their 95% confidence
envelope. The horizontal dotted line represents the null
hypothesis of identical diversity. Since it is always
outside of the confidence envelope, identical diversity is
rejected.

In the data we observe 147 and 149 species from plots
6 and 18 respectively. However, both plots are poorly
sampled and we must adjust these values. The best esti-
mators of richness are jackknives (Burnham and Overton,
1979). We use a jackknife of order 2 for plot 6 and one
of order 3 for plot 18: the choice of the optimal order
follows both Burnham and Overton (1979) and Brose
et al. (2003). The estimated richness is, respectively, 254
and 309 species. For this reason we estimate generalized
Simpson’s entropy up to order r = 253. This, along with
a 95% confidence envelope is given in Figure 1a.

The generalized Simpson’s diversity profiles along
with a 95% confidence envelope are given in Figure 1b.
These give more intuitive information since they represent
the effective numbers of species. Their values at r = 1
are given, respectively, by 39 and 46 species. Increasing
values of r give more importance to rare species, which
leads to the increase in the effective number of species
seen in the graph.

Plot 18 is undoubtedly more diverse than plot 6, with
a fairly stable difference of between 15 and 19 effective
species. In Figure 2 the difference between the entropies
is plotted with its 95% confidence envelope to test it
against the null hypothesis of zero difference. Since zero
is never in this envelope, we concude that plot 18 is
significantly more diverse than plot 6.

4. Discussion

4.1 Interpretation
Generalized Simpson’s entropy of order r can be in-
terpreted as the average information brought by the
observation of an individual. Its information function
I(p) = (1− p)r represents the probability of not observing
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(a) HCDT diversity profile.
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(b) Hurlbert’s diversity profile.

Figure 3. (a) HCDT and (b) Hurlbert’s diversity profiles of Paracou plots 6 (solid, green lines) and 18 (dotted, red
lines). The bold lines represent the estimated values, surrounded by their 95% confidence envelope (obtained by
1000 bootstraps)

a single individual of a species with proportion p in a
sample of size r. Thus I is an intuitive measure of rarity.

Chao et al. (2013) interpreted ζr as the probability
that the individual sampled at rank (r + 1) belongs to a
previously unobserved species in a species accumulation
curve. A related interpretation is as follows. If X is the
number of species observed exactly once in a sample of
size (r + 1), then ζr = E[X ]/(r + 1).

These interpretations are not limited to orders r <
S. However, when r ≥ S, ζr is no longer a reasonable
measure of diversity. Further, in this case, it may not be
maximized at the uniform distribution, which could lead
the effective number of species, rDζ , to be greater than
the actual number of species.

4.2 HCDT entropy
In this section we compare our results to those based on
the more standard HCDT entropy, which is given by

qT =
∑

S
s=1 pq

s −1
1−q

, q≥ 0,

where for q = 1 this is interpreted by its limiting value as
1T =−∑

S
s=1 ps log ps. The effective number of species for

HCDT entropy was derived in Hill (1973). It is given by

qDT =

(
S

∑
s=1

pq
s

)1/(1−q)

, q≥ 0,

where for q = 1 this is interpreted by its limiting value

as qDT = e
1T . We call this quantity HCDT diversity,

although in the literature it is often called Hill’s diversity
number. For our data, plots of qDT for q ∈ [0,2] along

with a 95% confidence envelope are given in Figure 3a.
Here qDT was estimated using the jackknife-unveiled
estimator of Marcon (2015) and the confidence envelope
was estimated using bootstrap.

It is easy to see that the importance of rare species in-
creases for HCDT entropy as q decreases. In comparison
the importance of rare species for generalized Simpson’s
entropy increases as r increases. Note that 2T = ζ1. To
see what values of q in HCDT entropy correspond to
other values of r for generalized Simpson’s entropy, we
can find when rDζ = qDT . Since we can only use ζr up to
r = S−1 it is of interest to find which value of q corre-
sponds to this value. For our data we find that in plot
6 q = 0.5 corresponds to r = 253 and in plot 18 q = 0.55
corresponds to r = 308.

The main difficulty in working with HCDT entropy is
that its estimators have quite a bit of bias especially for
smaller values of q (Marcon, 2015). This is illustrated in
Figure 3a, where we see that the confidence intervals of
the estimated values of the HCDT diversity of plots 6
and 18 have significant overlap up to q = 0.75.

Bias is not an issue with generalized Simpson’s en-
tropy, which can be estimated with no bias, regardless
of the sample size. However, the issue with generalized
Simpson’s entropy is that it can only be considered for
orders r ≤ S− 1, and larger values of r correspond to
smaller values of q for HCDT entropy. In our example,
the generalized Simpson’s diversity profile can be com-
pared to the part of the HCDT diversity profile between
q = 0.5 and q = 2. Focusing more on rare species is not
possible. HCDT diversity allows that theoretically, but is
seriously limited by its estimation issues: the profile has
a wide confidence envelope and is not conclusive below
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q = 0.75.

On the whole, generalized Simpson’s entropy allows
a more comprehensive comparison of diversity profiles.
If richness were greater, higher orders of generalized
Simpson’s diversity could be used and estimated with no
bias, while low-order HCDT estimation would get more
uncertain (Marcon, 2015).

4.3 Hurlbert’s diversity
Another measure of diversity, which is related to gen-
eralized Simpson’s entropy, was introduced in Hurlbert
(1971). It is given by

kH =
S

∑
s=1

[
1− (1− ps)

k
]
, k = 1,2, . . . ,

and corresponds to the expected number of species found
in a sample of size k. It is easily verified that 1H = 1
and that 2H = 1 + ζ1. The higher the value of k, the
greater the importance given to rare species. While
there is no simple formula for the corresponding effective
number of species, an iterative procedure for finding it
was developed in Dauby and Hardy (2012).

Hurlbert (1971) developed an unbiased estimator of
kH for all k smaller than the sample size. This is simi-
lar to what is needed to estimate generalized Simpson’s
entropy, although, generalized Simpson’s entropy also
needs k < S for it to be a measure of diversity. We esti-
mate Hurlbert’s index for the two plots, convert them
into effective numbers of species, and use bootstrap to
get a 95% confidence envelop. The results are given in
Figure 3b. We see that the maximum effective numbers
of species are well below those of the generalized Simp-
son’s diversity. Thus Hurlbert’s diversity finds fewer rare
species, making it a less interesting alternative for our
purpose.

5. Conclusion

Generalized Simpson’s entropy is a measure of diversity
respecting the classical axioms. Further, there is a simple
formula to transform it into an effective number of species.
It faces issues that limit its use: namely, for it to respect
the axiom of evenness, it order must be smaller that the
number of species in the population. On the other hand,
it has a decisive advantage over other metrics: it has an
easy to calculate uniformly minimum variance unbiased
estimator, which is consistent and asymptotically normal.
These properties make it a useful tool for estimating
diversity and allows us to robustly compare hyper-diverse,
poorly sampled communities.

R code to reproduce the examples in the paper, based
on the packages EntropyEstimation and entropart (Mar-
con and Hérault, 2015), is given in Appendix 2.
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6. Appendix 1: Proofs

The proof of Proposition 1 is given first. The gradient
and Hessian of the generalized Simpson’s entropy are
then calculated and the proof of the satisfaction of the
evenness axiom is given. Finally, we explain where the
confidence intervals come from.

Several of the proofs require understanding the prop-
erties of the function g(p) = p(1− p)r and its first deriva-
tive. For p ∈ [0,1) the first two derivatives of g are

g′(p) = (1− p)r− rp(1− p)r−1 (9)

and

g′′(p) = r [(r + 1) p−2] (1− p)r−2 . (10)

Lemma 1. 1. For p ∈ [0,1] we have g′(p) ≥ 0 if and
only if p ∈

[
0, 1

r+1

]
.

2. The function g′ is strictly decreasing for p ∈
[
0, 2

r+1

)
and strictly increasing for p ∈

( 2
r+1 ,1

)
.

3. The function g′ is nonincreasing for p ∈
[
0, 2

r+1

]
.

The information in this Lemma is summarized in
Table 1.

Proof. The first part follows from the fact that g′(p)≥ 0
holds if and only if (1− p)r ≥ rp(1− p)r−1, which holds
if and only if p ∈

[
0, 1

r+1

]
. For the second part we need

to characterize when g′′(p) is positive and when it is

negative. Since, for p ∈ [0,1), r (1− p)r−2 > 0, it follows
that g′(p) is strictly decreasing when [(r + 1) p−2] < 0,
which holds if and only if p ∈

[
0, 2

r+1

)
. Similarly it is

strictly increasing if and only if [(r + 1) p−2] > 0, which
holds when p ∈

( 2
r+1 ,1

)
. The proof of the third part is

similar to that of the second part.

6.1 Proof of Proposition 1
Proof. A differentiable trace-form entropy satisfies the
principle of transfers so long as g′(p) is decreasing (Patil
and Taillie, 1982, Theorem 4.2, with a typo: read V ′(π j)≥
V ′(πi)). From here the result follows by Lemma 1.

6.2 Gradient
Generalized Simpson’s entropy is given by

ζr =
S

∑
s=1

ps(1− ps)
r, r = 1,2, . . . . (11)

http://www.r-project.org
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Table 1. Variation table of the function g

p

g′′(p)

g′(p)

0 2
r+1 1

− 0 +

11

−
( r−1

r+1

)r−1−
( r−1

r+1

)r−1

00

1
S

1
r+1

0

Since ∑
S
s=1 ps = 1, it can be written as a function of all

probabilities but the last as

f (p1, p2, . . . , pS−1)

=
S−1

∑
s=1

ps(1− ps)
r +

(
1−

S−1

∑
s=1

ps

)(
S−1

∑
s=1

ps

)r

.

The gradient of f is the vector
(

∂ f
∂ p1

, ∂ f
∂ p2

, . . . , ∂ f
∂ pS−1

)
,

where for u = 1,2, . . . ,(S−1)

∂ f
∂ pu

= (1− pu)r− pur(1− pu)r−1

−

(
S−1

∑
s=1

ps

)r

+

(
1−

S−1

∑
s=1

ps

)
r

(
S−1

∑
s=1

ps

)r−1

. (12)

6.3 Hessian
The Hessian of f is the (S− 1)× (S− 1) matrix with

∂ 2 f
∂ pv∂ pu

in position (u,v), where for v 6= u

∂ 2 f
∂ pv∂ pu

=−2r

(
S−1

∑
s=1

ps

)r−1

+

(
1−

S−1

∑
s=1

ps

)
r (r−1)

(
S−1

∑
s=1

ps

)r−2

and

∂ 2 f
∂ p2

u
=−2r (1− pu)r−1

+ pur (r−1)(1− ps)
r−2−2r

(
S−1

∑
s=1

ps

)r−1

+

(
1−

S−1

∑
s=1

ps

)
r (r−1)

(
S−1

∑
s=1

ps

)r−2

.

6.4 Extremum when all probabilities are equal
Proposition 3. When all probabilities are equal, the
generalized Simpson’s entropy reaches a local maximum
if r + 1 < 2S and a local minimum if r + 1 > 2S.

Proof. When ps = 1
S for each s = 1,2, . . . ,S

∂ f
∂ ps

=

(
S−1

S

)r

− 1
S

r
(

S−1
S

)r−1

−
(

S−1
S

)r

+
1
S

r
(

S−1
S

)r−1

= 0,

which means that the gradient is zero and this is a critical
point. At this point the Hessian contains terms

∂ 2 f
∂ p2

u
=

r
S

(
S−1

S

)r−2

2 [r−2S + 1] (13)

and for v 6= u

∂ 2 f
∂ pv∂ pu

=−2r
(

S−1
S

)r−1

+

(
1
S

)
r (r−1)

(
S−1

S

)r−2

=
r
S

(
S−1

S

)r−2

[r−2S + 1] . (14)

Denote h(S,r) = r
S

( S−1
S

)r−2
2 [r−2S + 1]. The Hessian

matrix is

H = h(S,r)



2 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1

1 · · · 1 2


. (15)

It is easy to check that the matrx H/h(S,r) is positive
definite. Thus H is positive definite if h(S,r) > 0 and
negative definite if h(S,r) < 0. The sign of h(S,r) is that
of r−2S + 1. Thus, by the second derivative test, when
all probabilities are equal

� f reaches a local maximum if r + 1 < 2S;

� f reaches a local minimum if r + 1 > 2S.

This completes the proof.

6.5 Maximum of the function
The proof of Proposition 2 follows immediately from the
following.

Proposition 4. Let r ≤ S−1.
1. The global maximum of ζr is reached when all propor-
tions are equal.
2. There are no other local maxima.

Proof. From (12) it follows that

∂ f
∂ pu

= g′ (pu)−g′
(

1−
S−1

∑
s=1

ps

)
. (16)
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Thus, when the gradient equals zero it means that, for
every u = 1,2, . . . ,(S−1), we have

g′ (pu) = g′
(

1−
S−1

∑
s=1

ps

)
,

which implies that

g′ (p1) = g′ (p2) = · · ·= g′ (pS) . (17)

To guarantee that ∑
S
s=1 ps = 1 there must be at least

one u ∈ {1,2, . . . ,S} with pu ≤ 1
S . The assumption that

r ≤ (S−1) implies that pu ≤ 1
r+1 . Combining this with

Lemma 1 implies that g′(pu)≥ 0. Combining this with
(17) implies that g′(ps) ≥ 0 for each s. By Lemma 1
this means that ps ≤ 1

r+1 for each s. Since, by Lemma

1, g′ is strictly decreasing on
(
0, 2

r+1

)
it follows that

p1 = p2 = · · · = pS = 1/S. Thus the only critical point
is at the uniform distribution. By Proposition 3 this is
a local maximum, hence it is the global maximum as
well.

Remark 1. In summary, Propositions 3 and 4 imply
that

� When r ≤ S− 1, ζr has a global maximum at the
uniform distribution.

� When S ≤ r ≤ 2S− 1, ζr has a local maximum at
the uniform distribution.

� When r ≥ 2S, ζr has a local minimum at the uni-
form distribution.

This leaves the question of whether, in the case S≤
r≤ 2S−1, the local maximum at the uniform distribution
needs to be a global maximum. In general it does not. To
illustrate this we consider the simple case where p1 = p
and pu = 1−p

S−1 for u = 2,3, . . . ,S. In this case

ζr = u(p) = p(1− p)r +(1− p)

(
1− 1− p

S−1

)r

.

In Figure 4 a plot of u is given for S = 10 and r = 15 ∈
[S,2S−1]. The plot show that, in this case, the global
maximum is not at the uniform distribution.

6.6 Confidence intervals
The confidence intervals in Sections 2.4 and 2.5 follow
immediately from the following result.

Proposition 5. If r ≤ S−1 and there exists an s with
ps 6= 1/S then

√
n

Zv−ζv

σ̂v

L→ N(0,1) as n→ ∞. (18)

Proof. In Zhang and Grabchak (2014) it was shown that
(18) holds for any r and any (p1, p2, . . . , pS) for which
the gradient is not zero. Proposition 3 and the proof
of Proposition 4 imply that this always holds under the
given conditions.
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Figure 4. Plot of u(p) for S = 10 and r = 15
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7. Appendix 2: R code

library("entropart")

library("EntropyEstimation")

############## General settings ########################

# Generalized Simpson function

q.seq <- c(seq(0, .1, .025), seq(.15, .65, .05), seq(.7, 2, .1))

NumberOfSimulations <- 1000

Alpha <- 0.05

########################################################

############## Plot P6 and P18, data ########################

# Get data

data(Paracou618)

NsP6 <- as.AbdVector(Paracou618.MC$Nsi[, 1])

NsP18 <- as.AbdVector(Paracou618.MC$Nsi[, 2])

# Richness

(Richness(NsP6, Correction = "None"))

(S6 <- Richness(NsP6, Correction="Jackknife"))

(Richness(NsP18, Correction = "None"))

(S18 <- Richness(NsP18, Correction="Jackknife"))

S <- min(S6, S18)

############## Plot P6 and P18, HCDT ########################

# Calculate HCDT diversity profiles

D6 <- CommunityProfile(Diversity, NsP6, NumberOfSimulations=NumberOfSimulations,

q.seq=q.seq, Correction="UnveilJ")

D18 <- CommunityProfile(Diversity, NsP18, NumberOfSimulations=NumberOfSimulations,

q.seq=q.seq, Correction="UnveilJ")

# Plot both profiles

plot(D18$x, D18$y, ylim=c(min(D18$low)*.9, max(D18$high)*1.05), main="",

xlab = "Order of Diversity", ylab = "Diversity", xlim=range(q.seq), type="n")

CEnvelope(D6, LineWidth=2, main="", xlim=range(q.seq), ShadeColor=NA, col="darkgreen")

lines(D6$x, D6$high, col="darkgreen", lty=1)

lines(D6$x, D6$low, col="darkgreen", lty=1)

CEnvelope(D18, lty=2, LineWidth=2, col="red", BorderColor="red", ShadeColor="NA")

############## Plot P6 and P18, zeta ########################

# Gen Simpson profile, plot 6

zeta6 <- CommunityProfile(GenSimpson, NsP6, 1:(S-1))

sigma6 <- sapply(1:(S-1), function(r) GenSimp.sd(NsP6,r))

ic6 <- qnorm(1-Alpha/2)*sigma6/sqrt(sum(NsP6))

zeta6$low <- zeta6$y - ic6

zeta6$high <- zeta6$y + ic6

# Gen Simpson profile, plot 18

zeta18 <- CommunityProfile(GenSimpson, NsP18, 1:(S-1))

sigma18 <- sapply(1:(S-1), function(r) GenSimp.sd(NsP18,r))

ic18 <- qnorm(1-Alpha/2)*sigma18/sqrt(sum(NsP18))
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zeta18$low <- zeta18$y - ic18

zeta18$high <- zeta18$y + ic18

# Plot both profiles

plot(zeta18$x, zeta18$y, ylim=c(min(zeta6$low)*.9, 1), main="", xlab = "Order of Diversity",

ylab = "Generalized Simpson Entropy", xlim=c(1, S-1), type="n")

CEnvelope(zeta6, LineWidth=2, main="", xlim=c(1, S-1), ShadeColor=NA, col="darkgreen")

lines(zeta6$x, zeta6$high, col="darkgreen", lty=1)

lines(zeta6$x, zeta6$low, col="darkgreen", lty=1)

CEnvelope(zeta18, lty=2, LineWidth=2, col="red", BorderColor="red", ShadeColor="NA")

############## Plot P6 and P18, zeta Diversity ###########

# Transform entropy into diversity

zeta6D <- zeta6

zeta6D$y <- 1/(1-(zeta6$y)^(1/zeta6$x))

zeta6D$low <- 1/(1-(zeta6$low)^(1/zeta6$x))

zeta6D$high <- 1/(1-(zeta6$high)^(1/zeta6$x))

zeta18D <- zeta18

zeta18D$y <- 1/(1-(zeta18$y)^(1/zeta18$x))

zeta18D$low <- 1/(1-(zeta18$low)^(1/zeta18$x))

zeta18D$high <- 1/(1-(zeta18$high)^(1/zeta18$x))

# Plot both profiles

plot(zeta18D$x, zeta18D$y, ylim=c(min(zeta6D$low)*.9, max(zeta18D$high)*1.05), main="",

xlab = "Order of Diversity", ylab = "Generalized Simpson Diversity",

xlim=c(1, S-1), type="n")

CEnvelope(zeta6D, LineWidth=2, main="", xlim=c(1, S-1), ShadeColor=NA, col="darkgreen")

lines(zeta6D$x, zeta6D$high, col="darkgreen", lty=1)

lines(zeta6D$x, zeta6D$low, col="darkgreen", lty=1)

CEnvelope(zeta18D, lty=2, LineWidth=2, col="red", BorderColor="red", ShadeColor="NA")

############## Plot difference of entropy ########################

# Calculate P18-P6 with CI

Difference <- list(x=zeta18$x, y=zeta18$y-zeta6$y)

class(Difference) <- class(zeta18)

icDifference <- qnorm(1-Alpha/2)*sqrt(sigma6^2/sum(NsP6) + sigma18^2/sum(NsP18))

Difference$low <- Difference$y - icDifference

Difference$high <- Difference$y + icDifference

# Plot

plot(Difference, ylab="Difference of entropy")

abline(h=0, col="blue", lty=2)

############## Hurlbert ########################

# Hurlbert

N6 <- sum(NsP6)

N18 <- sum(NsP18)

N <- min(N6, N18)

Dk6 <- CommunityProfile(Hurlbert, NsP6, NumberOfSimulations=NumberOfSimulations, q.seq=2:N)

Dk18 <- CommunityProfile(Hurlbert, NsP18, NumberOfSimulations=NumberOfSimulations, q.seq=2:N)

# Plot both profiles

plot(Dk18$x, Dk18$y, ylim=c(min(Dk18$low)*.9, max(Dk18$high)*1.05), main="",

xlab = "Order of Diversity", ylab = "Hurlbert Diversity", xlim=c(2,N), type="n")
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CEnvelope(Dk6, LineWidth=2, main="", xlim=c(2,N), ShadeColor=NA, col="darkgreen")

lines(Dk6$x, Dk6$high, col="darkgreen", lty=1)

lines(Dk6$x, Dk6$low, col="darkgreen", lty=1)

CEnvelope(Dk18, lty=2, LineWidth=2, col="red", BorderColor="red", ShadeColor="NA")

############## Equivalence of orders ###########

# Min q value at max r

(qMin6 <- D6$x[which.min(D6$y > max(zeta6D$y))])

qOK6 <- which(D6$y < max(zeta6D$y))

(qMin18 <- D18$x[which.min(D18$y > max(zeta18D$y))])

qOK18 <- which(D18$y < max(zeta18D$y))

# Extend P18 zeta

zeta18e <- CommunityProfile(GenSimpson, NsP18, 1:(S18-1))

sigma18e <- sapply(1:(S18-1), function(r) GenSimp.sd(NsP18,r))

ic18e <- qnorm(1-Alpha/2)*sigma18e/sqrt(sum(NsP18))

zeta18e$low <- zeta18e$y - ic18e

zeta18e$high <- zeta18e$y + ic18e

# diversity

zeta18eD <- zeta18e

zeta18eD$y <- 1/(1-(zeta18e$y)^(1/zeta18e$x))

zeta18eD$low <- 1/(1-(zeta18e$low)^(1/zeta18e$x))

zeta18eD$high <- 1/(1-(zeta18e$high)^(1/zeta18e$x))

plot(zeta18eD)

# Min q value at max r

(qMin18e <- D18$x[which.min(D18$y > max(zeta18eD$y))])

qOK18e <- which(D18$y < max(zeta18eD$y))

############## Appendix proofs #########################

# univariate function u

u <- function(p, S, r) {

return( (1-p)*(1-(1-p)/(S-1))^r + p*(1-p)^r )

}

# graphical parameters

rshift <- .01

tcex <- .7

# parameters

S <- 10

r <- 15

curve(u(x, S=S, r=r), from=0, to=1, xlab="p", ylab="u(p)")

abline(v=1/S, col="red")

text(x = 1/S +rshift, y = 0.01, labels=expression(frac(1,S)), cex=tcex)

abline(v=1/(r+1), lty=2)

text(x = 1/(r+1) +rshift, y = 0.02, labels=expression(frac(1,r+1)), cex=tcex)

abline(v=2/(r+1), lty=3)

text(x = 2/(r+1) +rshift, y = 0, labels=expression(frac(2,r+1)), cex=tcex)

abline(v=1-(S-1)/(r+1), lty=4)

text(x = 1-(S-1)/(r+1) +rshift, y = 0, labels=expression(1-frac(S-1,r+1)), cex=tcex)
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