
HAL Id: hal-01212435
https://agroparistech.hal.science/hal-01212435v2

Preprint submitted on 6 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Estimation of Diversity from Abundance Data
Eric Marcon

To cite this version:

Eric Marcon. Practical Estimation of Diversity from Abundance Data. 2015. �hal-01212435v2�

https://agroparistech.hal.science/hal-01212435v2
https://hal.archives-ouvertes.fr


Hal 01212435 v2

Practical Estimation of Diversity from Abundance
Data

Eric Marcon1*

Abstract
Measuring biodiversity requires empirical techniques to effectively estimate it from real data. The well-known underestimation of
the number of species applies to low orders of diversity in general. I test nine estimators including three new ones on geometric
and lognormal distributions that represent realistic, hyper-diverse communities. The best two estimators allow a good estimation
of diversity of orders over 0.5, even when the sampling effort is low. I provide criteria to choose the estimator and the necessary
code in the R package entropart.
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Introduction

Measuring biodiversity requires both a robust theoretical
framework (Patil and Taillie, 1982) and empirical tech-
niques to effectively estimate the theoretical variables
with real data (Beck and Schwanghart, 2010). In this
paper I focus on species-neutral measures of diversity
based on HCDT entropy (Havrda and Charvát, 1967;

Daróczy, 1970; Tsallis, 1988) that fulfill the first require-
ment. Entropy measures the average surprise brought
by observing individuals of a community. Surprise is a
decreasing function of probability dropping to 0 when
probability is 1. HCDT entropy uses a parameterized
surprise function that is the deformed logarithm of order
q of the reciprocal of probability(Marcon et al., 2014a).
Traditional measures of diversity, namely the number of
species as well as Shannon’s and Simpson’s indices, are
special cases of the HCDT entropy for values of q equal
to 0, 1 and 2. HCDT entropy should be transformed into
Hill numbers (Hill, 1973) for better interpretation of the
value of diversity as an effective number of species (Jost,
2006). Hill numbers are simply the deformed exponential
of HCDT entropy (Marcon et al., 2014a). Rather than
focusing on a single value of q, a profile of diversity, i.e.
a plot of diversity against q, can be built (Tothmeresz,
1995). Low values of q (starting from 0) give much im-
portance to rare species, whilst higher values (usually up
to 2) focus on abundant species. Negative values of q
are not used because of poor mathematical properties of
their entropy (Beck, 2009), and values over 2 generally
bring little more information. Ordering communities in
terms of diversity requires that their profile do not cross
(Tothmeresz, 1995); else, declaring a community more
diverse than another only holds for a range of values
of q reflecting the importance given to rare or frequent
species (Lande et al., 2000).

To plot those profiles, diversity must be estimated
from the data. Estimation bias (I follow the terminology
of Dauby and Hardy, 2012) is a well-known issue (Marcon
et al., 2014a). Real data are almost always samples
of larger communities, so some species may have been
missed. The induced bias on the Simpson entropy is
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smaller than on the Shannon entropy because the former
assigns lower weights to rare species, i.e. the sampling
bias is even more important when q decreases. Another
estimation bias has been widely studied by physicists who
generally consider that all species of a given community
are known and their probabilities quantified. Their main
issue is not at all missing species but the non-linearity
of entropy measures (see Bonachela et al., 2008, for a
short review). Estimating probabilities at power q > 0
by the power of their estimator is an important source of
underestimation of entropy. The need for corrections has
generated a considerable literature in ecological statistics
and statistical physics.

In this paper, I test the performance of the state-
of-the-art estimators when applied to the kind of data
ecologists have to deal with. I start with simulated
distributions that have the advantage of being easily ma-
nipulated to generate various sampling intensities and
evaluate the bias and root mean square error (RMSE)
of the estimators. I address the classical models of the
literature, namely the lognormal and the geometric dis-
tributions. The lognormal distribution describes, at least
roughly, many hyperdiverse ecosystems even though the
link between its statistical success and the underlying
ecological mechanisms is poorly documented (Tokeshi,
1993). The geometric distribution is a far more difficult
case because it is very uneven: the frequency of rare
species is several orders of magnitude smaller than that
of the frequent ones, making it impossible to observe
with reasonable sampling effort (Haegeman et al., 2013).
I apply the best-known and best-performing estimators,
including three new ones, to those distributions and two
actual forest data sets. My purpose is to provide rec-
ommendations about the estimation technique to chose
when facing different types of data and draw general
conclusions about the possible accuracy of diversity esti-
mation.

Phyloentropy is the sum of HCDT entropy along an
ultrametric tree (Marcon and Hérault, 2015a) so estimat-
ing it reduces to estimating HCDT entropy. Phylodi-
versity is the deformed exponential of phyloentropy. In
short, estimating phylodiversity relies on the methods
presented here so I will focus on species-neutral diversity
for clarity.

I used the package entropart (Marcon and Hérault,
2015b) for R (R Development Core Team, 2015) for all
tests. The R code necessary to reproduce all results is in
the electronic appendix.

1. Methods

Consider a community of species indexed by s = 1, 2, . . . ,S.
ns is the number of individuals of species s sampled in
the community, n = ∑s ns the total number of sampled
individuals. The (unknown) probability ps for an indi-
vidual to belong to species s is estimated by p̂s = ns/n.

The number of species represented by ν individuals in
the sample of size n is sn

ν , so sn
0 if the (unknown) number

of unobserved species considering the sampling effort. sn
ν

is considered as a realization of the random variable Sn
ν

so it is used to estimate its expectation E(Sn
ν).

πν is the sum of the probabilities ps of species repre-
sented by ν individuals.

The deformed logarithm formalism (Tsallis, 1994) is
very convenient to manipulate entropies. The deformed
logarithm of order q is defined as:

lnq x =
x1−q−1

1−q
(1)

It converges to the natural logarithm when q→ 1.
The inverse function of lnq x is the deformed exponen-

tial:

ex
q = [1 +(1−q)x]

1
1−q (2)

1.1 Sample coverage
The sample coverage (Good, 1953) is the probability for
an individual in the community to belong to a species
observed in the sample. It equals the sums of the prob-
abilities of the observed species. It is an essential tool
for diversity estimation because it is included in some
estimators (e.g. Chao and Shen, 2003) and it allows the
evaluation of the completeness of sampling (Chao and
Jost, 2012). Its estimator given by Good is:

Ĉ = 1−
sn

1
n

(3)

It is biased (Zhang and Huang, 2007), because:

C = 1−
E(Sn

1)−π1

n
(4)

Good’s estimator neglects the term π1, the sum of the
probabilities of singletons. It was built from Turing’s fre-
quency formula relating the average probability of species
observed ν times to the number of species observed ν +1
and ν times. This formula has been improved by Chao
et al. (Chao and Shen, 2010; Chiu et al., 2014) to esti-
mate π1. Estimating the number of species by the Chao1
estimator (Chao, 1984), Chao and Shen (2010) obtained
an improved estimator of the sample coverage:

Ĉ = 1−
sn

1
n

[
(n−1)sn

1
(n−1)sn

1 + 2sn
2

]
(5)

This estimator has been further used by Chao and
Jost (2015) to derive an estimator of entropy (see below).

An almost unbiased estimator has been derived using
the information provided by the whole distribution (Chao
et al., 1988; Zhang and Huang, 2007):

Ĉ = 1−
n

∑
ν=1

(−1)ν+1
(

n
ν

)−1

sn
ν (6)



Practical Estimation of Diversity from Abundance Data — 3/29

I use it in this paper.

1.2 Estimators of entropy
The existing estimators and the new ones proposed here
can be classified into four main methods. The simplest
one just consists of plugging the estimator of ps, i.e.
p̂s = ns/n, into the definition of diversity to evaluate to
obtain a so-called plug-in estimator, sometimes named
naive estimator. The plug-in estimator of HCDT entropy
of order q is:

qĤ = ∑
s

p̂s lnq
1
p̂ s

(7)

The plug-in estimator is useless in hyper-diverse com-
munities because it severely underestimates diversity
because of unobserved species and of the non-linearity
of estimators.

Recent progress have been made in estimating the
actual distribution of the probability of species by fitting
a model of their distribution to the data. The distri-
bution of the unobserved species can be added if their
number is estimated and a distribution form is chosen.
Chao et al. (2015) used a two-parameter model based
on the estimation of the generalized sample coverage
(not detailed here), estimated the total richness with the
Chao1 estimator and modeled the unobserved species
as a geometric distribution to unveil the complete rank-
abundance distribution of an observed community. They
applied the plug-in estimator this distribution: I’ll call it
the “Chao-unveiled” estimator.

The Chao1 estimator has been built according to the
same theoretical approach as that of the unveiled rank-
abundance distribution. It is a lower-bound estimator of
the number of species. It has been improved by Chiu et al.
(2014) who slightly reduced its negative bias with the
iChao1 estimator, integrating species represented by 3
and 4 individuals. I define the“iChao-unveiled”estimator
as a variation on the “Chao-unveiled” estimator, where
richness is estimated by the iChao1 estimator.

The jackknife estimator (Burnham and Overton, 1979)
has shown good performances to estimate richness when
the sampling effort is too low for the Chao1 estimator to
perform well (Brose et al., 2003) even though it actually
lacks theoretical support Cormack (1989). I test the
use of the jackknife estimator, whose order is selected
according to the data, to define the “jackknife-unveiled”
estimator. Using the jackknife estimator to unveil the
tail of the abundance distribution was not the intention
of Chao et al. (2015) because it is not consistent with
their theoretical framework. It must be seen here as a
merely empirical tool.

The second method relies on the Horvitz and Thomp-
son (1952) estimator of the weighted sum of a function
of its elements, say ∑s ps f (s) when some of them are

not observed. An unbiased estimator of the sum is ob-
tained when each term is divided by its probability to
be observed 1− (1− ps)

n. Chao and Shen (2003) pro-
posed to combine it with the estimator of the sample
coverage: conditionally to the set of observed species,
an unbiased estimator (Ashbridge and Goudie, 2000) of
ps is p̃s = Ĉ p̂s. Chao and Shen estimated the Shannon
entropy; the method has then been extended to HCDT
entropy (Marcon et al., 2014a) and similarity-based di-
versity (Marcon et al., 2014b):

qH̃ = ∑
s=1

Ĉ p̂s lnq
1

Ĉ p̂s

1−
(
1−Ĉ p̂s

)n (8)

A further progress can be done by replacing the condi-
tional estimator of probabilities p̃s = Ĉ p̂s by that of Chao
et al. (2015). Since the improved probability estimator
depends on the generalized sample coverage, I’ll call the
improved Chao-Shen estimator the “generalized coverage”
estimator.

The third method has been derived by Grassberger
(1988) who gave a reduced-bias estimator of the value of
an integer at power q. pq

s is written as nq
s/nq and nq

s is
estimated (Marcon et al., 2014a) as:

ñq
s =

Γ(ns + 1)

Γ(ns−q + 1)
+

(−1)n
Γ(1 + q)sinπq
π (n + 1)

(9)

The estimator of pq
s is simply p̃q

s = ñq
s/nq. It is plugged

into the formula of entropy to obtain the Grassberger
estimator:

qH̃ =
1−∑s p̃q

s

q−1
(10)

The last method has been the subject of an impor-
tant literature in the last ten years. A review can be
found in Chao et al. (2013), Appendix A. It relies on
the estimation of hq = ∑s pq

s . hq can be written as the
following sum:

hq =
∞

∑
r=0

(
q−1

r

)
(−1)r

ζr (11)

ζr is the generalized Simpson entropy ∑s ps(1− ps)
r

defined by Zhang and Zhou (2010). The first n elements
of the sum, denoted h̃q, can be estimated with no bias
(Zhang and Grabchak, 2014):

h̃q =
S

∑
s=1

p̂s

n−ns

∑
v=1

[
v

∏
i=1

i−q
i

v

∏
j=1

(
1− ns−1

n− j

)]
(12)
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Zhang (2013) shows that the bias due to ignoring the
remaining terms is asymptotically normal and decays
exponentially fast. I’ll call the Zhang and Grabchak
(2014) estimator the one based on h̃q:

qH̃ =
1− h̃q

q−1
(13)

Some attempts have been made to estimate the re-
maining bias (Zhang and Grabchak, 2013). The most
achieved one is that of Chao and Jost (2015), completing
Chao et al. (2013). It relies on two assumptions: the total
number of species is estimated by the Chao1 estimator
and the actual probabilities of unobserved species can be
estimated all equal. A consequence is that the estimator
of the average probability of species sampled once also
equals the probability estimator of unobserved species.
Its value is noted A. It is 2sn

2/[(n−1)sn
1 + 2sn

2] if single-
tons and doubletons are present or 2/[(n−1)(sn

1−1)+ 2]
if doubletons are missing. The Chao-Wang-Jost estima-
tor of HCDT entropy is:

qH̃ =
1

q−1
[1− h̃q

−
sn

1
n

(1−A)1−n

(
Aq−1−

n−1

∑
r=0

(
q−1

r

)
(A−1)r

)
]

(14)

In absence of singletons and doubletons, A is set to
1 and the estimator is identical to that of Zhang and
Grabchak.

1.3 Confidence intervals
Two methods allow the evaluation of confidence inter-
vals: asymptotic, closed forms are available for some
estimators, or bootstrapping is required in the general
case.

Esty (1983), completed by Zhang and Huang (2007),
showed that the estimator of sample coverage (eq. 6)
is asymptotically normal with the following confidence
interval:

C = Ĉ± tn
1−α/2

√
sn

1

(
1− sn

1
n

)
+ 2sn

2

n
(15)

Where tn
1−α/2 is the quantile of a Student distribution

with n degrees of freedom at the risk threshold α, here
1.96 for all sample sizes and α = 5%.

The Zhang-Grabchak estimator is also asymptotically
normal and comes with an asymptotic confidence interval
(Zhang and Grabchak, 2014) implemented in the package
EntropyEstimation (Cao and Grabchak, 2014).

The theoretical distribution of other estimators is un-
known. They must be built by bootstrap techniques: the

observed community is re-sampled, say 1000 times, and
entropy is calculated each time. The α/2 and 1−α/2
quantiles of the distribution of entropy are the bounds of
the confidence interval. The issue of re-sampling a com-
munity is the same as that of sampling it: rare species
are often eliminated, so the entropy is underestimated.
Starting from the whole community, a first estimation
bias is caused by sampling it. The estimators presented
here aim at correcting it. When this observed community
is re-sampled, a second estimation bias appears. Esti-
mating the entropy of re-sampled communities with bias
correction yields, on average, the entropy of the observed
community estimated by the plug-in estimator (Marcon
et al., 2012): if the estimator works well, it eliminates the
second estimation bias but it cannot address the first one.
The solution to this problem is simply to recenter the en-
tropy distribution of re-sampled communities around the
value of the entropy of the observed community (Marcon
et al., 2012; Chao and Jost, 2015).

The re-sampling technique may just consist of draw-
ing individuals in the observed community with replace-
ment, or, equivalently, drawing a community in a multi-
nomial distribution respecting the size and probability
distribution of the observed community (Marcon et al.,
2014a). A more sophisticated technique has been pro-
posed by Chao and Jost (2015). Given the sample size,
the probability distribution of observed species can be es-
timated more accurately than by the estimator p̃s = Ĉ p̂s
which underestimates the probability of rare species
(Chao et al., 2015). A better estimate of the proba-
bilities is used (actually, a simplified version of that of
the unveiled estimators above) and completed by an es-
timation of the number of unobserved species, whose
probabilities are assumed identical. Despite these ex-
tra efforts, the distribution of the entropy of re-sampled
community still has to be recentered.

1.4 From entropy to diversity
All entropy estimations are finally transformed into di-
versity values to be interpretable (Jost, 2006). It is not
correct to recenter the confidence interval of diversity
estimations because of the non-linearity of the transfor-
mation of entropy into diversity (Marcon et al., 2012).
The correct process consists of evaluating entropy with
its confidence interval and make the final exponential
transformation of all values into diversity.

1.5 Typical distributions
Comparing the performance of estimators requires simu-
lations of realistic communities. I chose to focus on two
opposed models making sense in ecology. The lognormal
distribution (Preston, 1948) fits well species-rich commu-
nities for several reasons, including populations dynamics
(Engen and Lande, 1996), niche apportionment (Bulmer,
1974), or even statistical physics arguments (Pueyo et al.,
2007; Dewar and Porté, 2008). It is often well fitted
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Figure 1. Rank-Abundance curves of 300 species
following a lognormal (top curve) or a geometric
distribution (straight line). The red lines are the fitted
models.

empirically (Tokeshi, 1990) even though it has been ques-
tioned theoretically (Williamson and Gaston, 2005). The
local community distribution according to the neutral
theory (Volkov et al., 2003) is not lognormal but departs
from it very moderately. The logarithm of the species
probabilities follows a Gaussian distribution.

The geometric series model (Motomura, 1932; Whit-
taker, 1972) generates far more uneven species distri-
butions. In this model, the first species is represented
by a part p of the total resources. The second one has
the same part p of the remaining resources, and so on.
Finally, probabilities are normalized to be proportional
to the resources taken.

I generated four artificial communities following those
distributions. Figure 1 presents a lognormal one, with
log-standard-deviation equal to 2 (typical of the distri-
bution of tree species in a rainforest) and a geometric
distribution with parameter p = 0.1. Both contain 300
species. The other two distributions have identical pa-
rameters except for the number of species augmented to
600.

1.6 Evaluation of the performance of estimators
The performance of each estimator was calculated as its
average relative bias on all values of q (i.e. the average
difference between the mean simulated entropy and its
true value) and it Root Mean Square Error (RMSE, i.e.
the square root of the sum of the squared bias and the
variance, divided by the true value). The true entropy
of each reference distribution was calculated with the
known values of ps. For each reference distribution,
1000 random samples of the chosen size were drawn
in a multinomial distribution respecting the reference

probabilities ps. Entropy was calculated for q between
0 and 2. The average entropy and its first and last
2.5% quantiles were retained to build the profile and its
confidence envelope (which is quite different from that
of the estimation of real communities). Finally, entropy
was transformed into diversity to be plotted.

2. Results

I drew multinomial samples of various sizes in the cho-
sen species distributions, simulating a real, independent
sampling of individuals. Sample sizes are between 200
and 5000 individuals to cover a range from obvious un-
dersampling to a high-effort inventory: 5000 individuals
correspond to 9 to 10 ha of forest.

2.1 Sample coverage
I first evaluated the performance of the estimator of
sample coverage. 2 communities of each size between
200 and 5000 individuals were sampled in each typical
distribution. The real and estimated sample coverages
are compared on figure 2. The estimation of sample
coverage is very efficient. A model II linear regression
(Legendre, 2014) validated the accuracy of the estimation.

Conditionally to the sample size, the relation vanishes
but the average estimation is very close to the average
actual value: as predicted by the theory, the estimation
bias is very small (Figures 7 and 8).

2.2 Entropy and diversity
I estimated the entropy profiles of the lognormal and
geometric distributions of 300 and 600 species, sampled
at 4 different intensities (200, 500, 1000 and 5000 in-
dividuals), by 9 estimators: Chao-Shen, Grassberger,
Chao-Wang-Jost, Zhang-Grabchak, Generalized Cover-
age, the three unveiled and the Plug-in. The diversity
profiles are plotted in the electronic appendices.

The root mean square error of the estimators is shown
on figure 3 for the lognormal and the geometric distribu-
tions with 300 species when 1000 individuals are sampled,
a typical tropical forest inventory of trees.

Unsurprisingly, the plug-in estimator is severely bi-
ased and has the poorest results in the tests. The
Chao-Wang-Jost estimator systematically outperforms
the Zhang-Grabchak estimator (which actually performs
little better than the plugin-estimator here) by construc-
tion. Its complementary estimation is not paid by in-
creased variance. The Grassberger estimator is totally
inefficient for low values of q as already noticed by Mar-
con et al. (2014a). The generalized coverage estimator
outperforms Chao-Shen because of its better estimation
of conditional probabilities. The Chao-unveiled estimator
is almost confused with the Chao-Wang-Jost estimator.
Both are outperformed by the iChao-unveiled estima-
tor because it improves the estimation of the number of
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(a) Lognormal distribution. The estimated sample coverage is
0.991 times the real one plus 0.009, with an R2 value around
94%.
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(b) Geometric distribution. The estimated sample coverage is
1.046 times the real one minus 0.046, with an R2 value around
69%

Figure 2. Estimated vs real sample coverage of simulated samples of a (a) lognormal or (b) geometric distribution
of 300 species. Sample sizes are between 200 and 5000 individuals. The line represents the fit of a model II (Major
Axis method) linear regression.
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(a) Lognormal distribution.
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(b) Geometric distribution

Figure 3. Estimated relative RMSE of the estimators of diversity based on 1000 samples of 1000 individuals of each
typical distribution (lognormal and geometric) of 300 species. The RMSE is normalized by the actual diversity. It is
quite high for low orders of diversity, especially for the geometric distribution. Values of q over 0.6 are not shown
because all estimators perform similarly well. The legend lists the estimators in the increasing order of RMSE for
q > 0.1, where the estimator with the lowest RMSE is the jackknife-unveiled one, closely followed by the
iChao-unveiled and Chao-Wang-Jost. Close to q = 0, the jackknife-unveiled estimator has a higher variance making
it the least reliable estimator.
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Figure 4. Diversity profiles estimated from 1000
random samples of 1000 individuals from a lognormal
community of 300 species. The bold, black line
represents the real diversity (starting from 0D = 269).
The jackknife-unveiled estimator is plotted by the blue,
dashed line (0D̂ ≈ 250). Its confidence interval (blue
dots) is very wide. The Chao-Wang-Jost estimator (red,
bold line: 0D̂ = 209) is more biased downard but its
confidence interval (red, solid lines) is much smaller.

species. The jackknife-unveiled estimator is more flex-
ible than the previous ones to estimate the number of
species. The order of the jackknife estimator it uses
changes between simulations, causing an excessive vari-
ance for q < 0.1. It performs best for higher orders of
diversity.

Results are consistent whatever the model. The gen-
eral pattern is a poor estimation of low orders of diversity,
and a quite accurate estimation of high orders, as pre-
viously shown by Haegeman et al. (2013). The RMSE
varies a lot according to the model.

I am continuing the analysis with the best two estima-
tors: Chao-Wang-Jost and jackknife-unveiled, ignoring
the iChao-unveiled estimator which takes place between
them but is too similar to the jackknife-unveiled to bring
decisive arguments for the discussion. Figure 4 shows
their profiles for a 1000-individual sample of a lognor-
mal distribution of 300 species, with their confidence
intervals.

3. Discussion

The underlying distribution of species is the most impor-
tant determinant of the success of diversity estimation:
the estimation bias of heavy-tailed distributions decays
more slowly when the sample size is increased (Zhang and
Grabchak, 2013). Estimating the low-order diversity of a
sample from a geometric distribution is all but impossible

(Haegeman et al., 2013) but the low-order diversity of
lognormal communities can be estimated meaningfully
when the sample size is sufficient. Empirically, it is not
possible to discriminate a severely-censused geometric
distribution and a lognormal one (Tokeshi, 1993): both
models fit well since most of the difference is contained
by the unobserved tails of the distributions. So, theoreti-
cal, ecological arguments about the actual distribution
of the community are necessary to decide whether an
estimation of diversity is reliable.

Diversity of order over 0.5 is pretty well estimated
in the context of this paper. Haegeman et al. showed
that this remains true for q ≥ 1, even when geometric
communities of millions of species with parameter 0.5
(the most abundant species takes half the resources, the
second one a quarter and so on) are addressed.

3.1 The sample coverage is not always the good indi-
cator of the quality of estimation

The sample coverage can not be used as a proxy for how
much an estimate of diversity can be relied upon. At the
same sampling effort, the sample coverage appears to be
higher for the geometric distribution (Figures 7 and 8).
Far more species are not sampled than in a lognormal
distribution, but their total probability is smaller. For
example, samples of 200 individuals drawn in 300-species
geometric and lognormal communities yield an average
estimation of 54 and 149 species by the jackknife-unveiled
estimator, but the respective sample coverages are over
95% for the geometric distribution versus around 81%
for the lognormal one.

The estimation bias is thus much greater for low
orders of diversity even though the sample coverage is
higher. Chao and Jost (2012) argue in favor of the sample
coverage as a better measure of the sampling effort than
the sample size. I agree as long as the underlying distri-
bution of communities is the same: then, standardizing
the sampling effort by the sample coverage is pertinent.

3.2 Comparing the diversity of real communities with
different distributions remains untractable

When the number of species of the theoretical distribu-
tions is doubled, everything else equal, the sampling bias
increases (compare figures 14 and 18). With the same
sampling effort, the coverage of the lognormal distribu-
tion decreases (compare figures 7 and 8, left columns).
Doubling the effort brings both the sample coverage and
the bias back to their previous level, with a reduced
variance (compare figures 18c and 14e).

This is a very simple and intuitive behavior, but it is
completely different with the geometric distribution: the
sample coverage does not change when richness is dou-
bled (compare figures 7 and 8, right columns) because
the probabilities of the 300 rarest species are negligi-
ble. Doubling the sample size does not restore the bias
level (compare figures 18d and 14f). An extensive and



Practical Estimation of Diversity from Abundance Data — 8/29

rigorous analysis of the influence of the parameters of
the theoretical distributions (beyond manipulating the
number of species) is not the scope of this paper, but
this simple example shows that no general and simple
rules are available to compare the low-order diversity of
communities of different nature.

3.3 Estimating the number of species is the critical
step

The lower q, the more difficult the estimation is, but
the estimation of the number of species has been long
studied and simple rules of decision have been proposed
(Burnham and Overton, 1979; Brose et al., 2003) to chose
the most appropriate order of the jackknife estimator.
Burnham and Overton derived a selection procedure to
obtain the order allowing to minimize the RMSE of the
estimation of the number of species. It is implemented
in the package SPECIES (Wang, 2011) for R. Brose
et al. showed (empirically) hat the first-order jackknife
is selected when the sample completeness (terminology
by Beck and Schwanghart, 2010), i.e. the proportion of
observed species (S−sn

0)/S is over 3/4 (precisely 74% in
their paper). When it is less, higher orders have less bias
but more variance. It is easy to estimate the number of
species of an actual sample this way and compare it to
the Chao1 estimator. If both coincide, the Chao-Wang-
Jost estimator will perform well for the whole profile:
its value at q = 0 is that of Chao1. Else, the jackknife-
unveiled estimator will be the best choice since its value
at q = 0 is the optimal-order jackknife. If one does not
want to rely on the jackknife estimator for some reason,
such as its poor theoretical support, the iChao-unveiled
estimator is a reasonable compromise as a lower bound
estimation.

3.4 Better, but probably not much better, estimators
may be derived

The most promising ways of research according to the
present results are a better estimation of the remaining
bias of the Zhang-Grabchak estimator and the improve-
ment of the distribution modeling of the unveiled estima-
tors. The first approach is that of the Chao-Wang-Jost
estimator, which is limited by its estimation of the num-
ber of species (the lower bound, Chao1 estimator). The
price for releasing this constraint is losing the elegant,
closed form of the estimator allowed by appropriate ap-
proximations of the infinite sum of the unknown elements
of eq. (11) for a numeric approximation.

The distribution of species is modeled with two pa-
rameters in the unveiled estimators. This can be refined
by extending the technique presented by Chao et al.
(2015) to higher orders of sample coverage. In both cases,
better fitting the data to reduce the bias has its limits
because the variance of estimation is likely to increase
(Bonachela et al., 2008). So, the estimators presented
here may not be far from the optimum trade-off (less
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Figure 5. Estimated diversity profile of the tree species
of the BCI 50-ha plot. The shaded zone is the 95%
confidence interval of the estimation.

bias with the jackknife-unveiled estimator, less variance
with Chao-Wang-Jost).

4. Application to real data

I now estimate the diversity of two real forest plots.
The first case is Barro Colorado Island’s 50-ha plot of
tropical forest (Hubbell et al., 2005), whose inventory
data of trees over 10 cm diameter at breast height are
available in the package vegan (Oksanen et al., 2012) for
R. 225 species have been sampled, with a quite good
fit to a lognormal distribution. The sample size is over
20000 individuals, the sample coverage is over 99.9%.
Estimating the number of species with the Chao1 (239
species) or the jackknife 1 (244) estimators gives very
similar results. This is an unusually large dataset, whose
diversity estimation (Figure 5) is quite easy.

The best estimator is Chao-Wang-Jost since the Chao1
estimator is appropriate for the number of species. The
95% confidence interval of the estimation is built by re-
sampling according to the technique by Chao and Jost
(2015). It is very small due to the abundance of data.

The second example takes place at the other extreme
of sampling intensity. A 1-ha plot (plot 18) of tropical
forest in the experimental forest of Paracou (Gourlet-
Fleury et al., 2004), French Guiana, has been inventoried.
Data are available in the package entropart for R. Only
481 trees over 10 cm diameter at breast height have
been sampled. They belong to 149 species. The sample
coverage is 84.6±4.4%. The estimated number of species
is 254 according to Chao1, but the appropriate Jackknife
estimator (of order 3) returns 309 species. Clearly, the
sampling effort is not sufficient for an accurate estimation:
the sample coverage is too low and the estimation of the
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Figure 6. Estimated diversity profiles of the tree species
of the Paracou 1-ha plot #18. The shaded zone is the
95% confidence interval of the estimation.

number of species too uncertain. With no doubt, the
Chao-Wang-Jost estimator will severely underestimate
diversity.

The jackknife-unveiled estimator is the best choice.
Its confidence interval is very wide up to q = 0.3. Over
q = 0.5, the simulations above showed that the estimator
has a very low variability, so the confidence interval is
due to the uncertainty of the sampling only. At lower
orders of diversity, the estimator’s uncertainty amplifies
it so the estimation is not reliable. In this case, the very
little accuracy of the jackknife-unveiled estimator (the
number of species is estimated between 237 and 439) is
preferable to the far smaller confidence interval provided
by a less variable but more biased estimator such as
Chao-Wang-Jost that would probably not contain the
actual values of low-order diversity (Figure 14e).

5. Conclusion

I have tried to evaluate the performance of diversity
estimation in real conditions with simulation studies
covering a reasonable set of models. Unsurprisingly,
estimating diversity is more difficult when the species
distribution has a heavier tail and the number of species
is greater. As of the state of the art, the recommendation
is to apply the Chao-Wang-Jost, the iChao-unveiled or
the jackknife-unveiled estimator and consider diversity
of order lower than 0.5 with caution.

When the sampling effort is high enough to allow
a correct estimation of the number of species with the
Chao1 estimator, the estimation by Chao-Wang-Jost is
quite good down to q = 0. If this is not the case, the
jackknife-unveiled estimator provides better results but
with a higher variability. A conservative compromise for

a first estimation of diversity, before choosing between
Chao-Wang-Jost and jackknife-unveiled, is the iChao-
unveiled estimator.

The entropart package for R allows computing species-
neutral diversity and phylodiversity with all the estima-
tors presented here.
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Appendix 1: Sample coverage estimation

Figures 7 and 8 compares the estimated and the real
sample coverages of 1000 samples of sizes between 200
and 5000 individuals from a lognormal and a geometric
distribution of 300 or 600 species The average estimated
sample coverage virtually equals the average real coverage
even when the sampling size is small.

Appendix 2: Estimated diversity profiles

Figures 9 to 17 show the estimation of diversity profiles
of communities of 300 species. Each figure presents
an estimator. The diversity of the lognormal and of
the geometric community is estimated, for sample sizes
from 200 to 5000 individuals. 1000 simulations were
performed to produce a 95% confidence envelope of the
profiles. Figures 18 and ?? present the same profiles
for 600-species communities, limited to the best two
estimators.
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Figure 7. Estimated vs real sample coverage of simulated samples. The dotted lines are the average values. The
distributions contain 300 species. The plain line represents equality.
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Figure 8. Estimated vs real sample coverage of simulated samples. The dotted lines are the average values. The
distributions contain 600 species. The plain line represents equality.
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(g) Lognormal, 300 species, 200 individuals
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(h) Geometric, 300 species, 200 individuals

Figure 9. Estimation by the plug-in estimator of the diversity profiles of simulated lognormal (left) and geometric
(right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95% confidence
envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(b) Geometric, 300 species, 5000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(c) Lognormal, 300 species, 1000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(d) Geometric, 300 species, 1000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(e) Lognormal, 300 species, 500 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(f) Geometric, 300 species, 500 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(g) Lognormal, 300 species, 200 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(h) Geometric, 300 species, 200 individuals

Figure 10. Estimation by the Zhang-Grabchak estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(b) Geometric, 300 species, 5000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(c) Lognormal, 300 species, 1000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(d) Geometric, 300 species, 1000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(e) Lognormal, 300 species, 500 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(f) Geometric, 300 species, 500 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty
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Figure 11. Estimation by the Grassberger estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals
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Figure 12. Estimation by the Chao-Shen estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals
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Figure 13. Estimation by the Generalized-Coverage estimator of the diversity profiles of simulated lognormal (left)
and geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The
95% confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals
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(h) Geometric, 300 species, 200 individuals

Figure 14. Estimation by the Chao-Wang-Jost estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals
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(c) Lognormal, 300 species, 1000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(d) Geometric, 300 species, 1000 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(e) Lognormal, 300 species, 500 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(f) Geometric, 300 species, 500 individuals

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

20
0

30
0

D
iv

er
si

ty

(g) Lognormal, 300 species, 200 individuals
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Figure 15. Estimation by the Chao-unveiled estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals
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Figure 16. Estimation by the iChao-unveiled estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 300 species, 5000 individuals
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Figure 17. Estimation by the jackknife-unveiled estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.



Practical Estimation of Diversity from Abundance Data — 23/29

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
10

0
30

0
50

0

D
iv

er
si

ty

(a) Lognormal, 600 species, 5000 individuals
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Figure 18. Estimation by the Chao-Wang-Jost estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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(a) Lognormal, 600 species, 5000 individuals
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Figure 19. Estimation by the jackknife-unveiled estimator of the diversity profiles of simulated lognormal (left) and
geometric (right) communities. The sample size decreases from 5000 (top) to 200 (bottom) individuals. The 95%
confidence envelope of the estimation is shaded. The real diversity is plotted by the bold line.
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Appendix 3: R code

The necessary code to reproduce all results of the paper is given here.

library("entropart")

library("lmodel2")

library("vegan")

############## Simulation parameters ###############

Distributions <- c("lnorm", "geom")

Richness <- c(300, 600)

SampleSizes <- c(200, 500, 1000, 5000)

Corrections <- c("UnveilJ", "UnveiliC", "UnveilC", "ChaoWangJost",

"GenCov", "ChaoShen", "Grassberger", "ZhangGrabchak", "None")

q.seq <- c(seq(0, .1, 0.025), .15, seq(.2, .6, 0.1))

NumberOfSimulations <- 1000

Alpha <- 0.05

####################################################

############## Generate Communities ################

# Log normal: sd similar to BCI

sdlog <- 2

# Geometric: each species takes 10% of the remaining stick

prob <- .1

# rDistribution generates a probability distribution

rDistribution <- function (Distribution, S)

{

# Generate the distribution

Ps <- switch(Distribution,

lnorm = (rlnorm(S, 0, sdlog) -> Ns)/sum(Ns),

geom = prob/(1-(1-prob)^S)*(1-prob)^(0:(S-1))

)

return(as.ProbaVector(Ps))

}

# Generate distributions

for (Distribution in Distributions) {

for (S in Richness) {

assign(paste("P", Distribution, S, sep=""), rDistribution(Distribution, S))

}

}

# Plot distributions

for (Distribution in Distributions) {

for (S in Richness) {

# Figure - Whittaker plot

plot.SpeciesDistribution(eval(as.name(paste("P", Distribution, S, sep=""))),

Distribution=Distribution, ylab="Probablity")

}

}

# Figure: Distributions lognormal and geometric

plot.SpeciesDistribution(Plnorm300, Distribution="lnorm", ylab="Probablity",
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ylim=c(1e-15, 1e-1), cex=.5)

points(Pgeom300, cex=.5)

lNs <- log(Pgeom300)

Rank <- 1:length(Pgeom300)

reg <- lm(lNs~Rank)

lines(Rank, exp(reg$coefficients[1]+reg$coefficients[2]*Rank), col = "red")

####################################################

############## Sample coverage #####################

# Function to simulate communities and compare observed to real coverage

SCfig <- function(Ps, Size, NumberOfSimulations, Distribution, S)

{

# Simulate communities of the chosen size according to the chosen probability distribution

MCSim <- rCommunity(NumberOfSimulations, size=Size, NorP=Ps)

# Sum the actual probabilities of observed species in each simulation

RealC <- colSums(Ps * (MCSim$Nsi>0))

plot(RealC, MCSim$SampleCoverage.communities, xlab="Real Sample Coverage",

ylab="Estimated Sample Coverage")

abline(a=0, b=1)

abline(h=mean(MCSim$SampleCoverage.communities), lty=2)

abline(v=mean(RealC), lty=2)

return(MCSim)

}

# Test all distributions

for (Distribution in Distributions) {

for (S in Richness) {

Ps <- eval(as.name(paste("P", Distribution, S, sep="")))

# Test all sizes

for (Size in SampleSizes) {

SCfig(Ps, Size, NumberOfSimulations, Distribution, S)

}

# Overall evaluation: 2 simulations for each community size between 200 and 5000

RealC <- EstimC <- numeric()

for (Size in min(SampleSizes):max(SampleSizes)) {

MCSim <- rCommunity(2, size=Size, NorP=Ps)

RealC <- c(RealC, colSums(Ps * (MCSim$Nsi>0)))

EstimC <- c(EstimC, MCSim$SampleCoverage.communities)

}

plot(RealC, EstimC, xlab="Real Sample Coverage", ylab="Estimated Sample Coverage")

abline(a=0, b=1)

# Type II regression between real and observed C

print(paste(Distribution, "Distribution", S, "species"))

print(reg <- lmodel2(RealC~EstimC, nperm=1000))

}

}

####################################################

############## Entropy and Diversity ###############

# Function to build the confidence envelope of the estimation
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CommunityProfileBySize <- function(FUN, Ps, q.seq, Size,

NumberOfSimulations, Correction, Alpha)

{

# Create a MetaCommunity made of simulated communities

MCSim <- rCommunity(NumberOfSimulations, size=Size, NorP=Ps, CheckArguments = FALSE)

ProgressBar <- txtProgressBar(min=0, max=NumberOfSimulations)

Sims <- matrix(nrow=NumberOfSimulations, ncol=length(q.seq))

# Loops are required for the progress bar, instead of:

# Sims <- apply(MCSim$Nsi, 2, function(Nsi) CommunityProfile(FUN, Nsi, q.seq, ...)$y)

for (i in 1:NumberOfSimulations) {

Sims[i, ] <- sapply(q.seq, function(q) FUN(MCSim$Nsi[, i], q,

Correction=Correction, CheckArguments = FALSE))

setTxtProgressBar(ProgressBar, i)

}

Means <- apply(Sims, 2, mean)

Vars <- apply(Sims, 2, var)

# Quantiles of simulations for each q

EstEnvelope <- apply(Sims, 2, quantile, probs = c(Alpha/2, 1-Alpha/2))

colnames(EstEnvelope) <- q.seq

Profile <- list(x = q.seq,

y = Means,

low = EstEnvelope[1,],

high = EstEnvelope[2,],

var = Vars,

Coverage = MCSim$SampleCoverage.communities

)

class(Profile) <- "CommunityProfile"

return (Profile)

}

# Calculate diversity profiles

for (Distribution in Distributions) {

for (S in Richness) {

Ps <- eval(as.name(paste("P", Distribution, S, sep="")))

# Real Profile

Values <- sapply(q.seq, function(q) Tsallis(Ps, q, CheckArguments = FALSE))

# Graphical parameters

yLim <- c(0.9*min(Values), 1.1*max(Values))

for (Size in SampleSizes) {

for (Correction in Corrections) {

# Entropy profile

CommunityProfileBySize(bcTsallis, Ps, q.seq, Size,

NumberOfSimulations, Correction, Alpha) -> Env

# Transform entropy into diversity

DEnv <- expq.CommunityProfile(Env)

DValues <- sapply(1:length(q.seq), function(i) expq(Values[i], q.seq[i]))

# Save the data

Env$Real <- Values

# Calculate RMSE

Env$RMSE <- sqrt((Env$Real-Env$y)^2 + Env$var)/Env$Real

assign(paste("E", Distribution, S, "_", Size, Correction, sep=""), Env)

}
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}

}

}

# Plot diversity profiles

for (Distribution in Distributions) {

for (S in Richness) {

for (Size in SampleSizes) {

for (Correction in Corrections) {

DEnv <- eval(as.name(paste("E", Distribution, S, "_", Size, Correction, sep="")))

plot(DEnv, ylim=c(min(DEnv$Real)*.9, max(DEnv$Real)*1.1), LineWidth=1, main="")

lines(q.seq, DEnv$Real, lwd=2)

}

}

}

}

####################################################

###### Figure DP lnormal300 - 1000 individuals #####

plot(Elnorm300_1000ChaoWangJost$x, Elnorm300_1000ChaoWangJost$y,

ylim=c(min(Elnorm300_1000ChaoWangJost$Real)*.9,

max(Elnorm300_1000ChaoWangJost$Real)*1.1),

main="", xlab = "Order of Diversity", ylab = "Diversity", xlim=c(0, 0.6), type="n")

CEnvelope(Elnorm300_1000ChaoWangJost,

LineWidth=2, main="", xlim=c(0, 0.6), ShadeColor=NA, col="red")

lines(Elnorm300_1000ChaoWangJost$x, Elnorm300_1000ChaoWangJost$high,

col="red", lty=1)

lines(Elnorm300_1000ChaoWangJost$x, Elnorm300_1000ChaoWangJost$low,

col="red", lty=1)

CEnvelope(Elnorm300_1000UnveilJ, lty=2, LineWidth=2, col="blue",

BorderColor="blue", ShadeColor=NA)

lines(q.seq, Elnorm300_1000ChaoWangJost$Real, lwd=2, lty=1)

####################################################

####### Figures RMSE ###############################

# Figure RMSE lnorm300

plot(q.seq, seq(0, 1, length.out=length(q.seq)), type="n",

xlab="Order of Diversity", ylab="RMSE", xlim=c(0, 0.6))

ltype <- 1

Cases <- vector()

for (Correction in Corrections) {

lines(q.seq,

eval(as.name(paste("Elnorm300_1000", Correction, sep="")))$RMSE, lty=ltype)

ltype <- ltype+1

Cases <- append(Cases, Correction)

}

legend("topright", legend = Cases, lty = 1:ltype)

# Figure RMSE geom300

plot(q.seq, seq(0, 1, length.out=length(q.seq)), type="n",
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xlab="Order of Diversity", ylab="RMSE", xlim=c(0, 0.6))

ltype <- 1

Cases <- vector()

for (Correction in Corrections) {

lines(q.seq, eval(as.name(paste("Egeom300_1000", Correction, sep="")))$RMSE, lty=ltype)

ltype <- ltype+1

Cases <- append(Cases, Correction)

}

legend("topright", legend = Cases, lty = 1:ltype)

####################################################

####### Real data ##################################

# BCI

data(BCI)

NsBCI <- as.AbdVector(colSums(BCI))

plot(NsBCI, Distribution="lnorm")

NBCI <- sum(NsBCI)

AbdBCI <- AbdFreqCount(NsBCI)

# Sample coverage

(CBCI <- Coverage(NsBCI))

S1BCI <- AbdBCI[which(AbdBCI[, 1] == 1), 2]

S2BCI <- AbdBCI[which(AbdBCI[, 1] == 2), 2]

# Confidence interval of the sample coverage estimation

ICBCI <- qt(1-Alpha/2, NBCI)*sqrt(S1BCI*(1-S1BCI/NBCI)+2*S2BCI)/NBCI

# Number of species

Richness(NsBCI, Correction="Chao1")

Richness(NsBCI, Correction="Jackknife")

# Diversity profile

DPBCI <- CommunityProfile(Diversity, NsBCI,

NumberOfSimulations = 100, Alpha=Alpha)

plot(DPBCI)

# Paracou 18

data(Paracou618)

NsP18 <- as.AbdVector(Paracou618.MC$Nsi[, 2])

plot(NsP18, Distribution="lnorm")

NP18 <- sum(NsP18)

AbdP18 <- AbdFreqCount(NsP18)

# Sample coverage

(CP18 <- Coverage(NsP18))

S1P18 <- AbdP18[which(AbdP18[, 1] == 1), 2]

S2P18 <- AbdP18[which(AbdP18[, 1] == 2), 2]

# Confidence interval of the sample coverage estimation

ICP18 <- qt(1-Alpha/2, NP18)*sqrt(S1P18*(1-S1P18/NP18)+2*S2P18)/NP18

# Number of species

Richness(NsP18, Correction="Chao1")

Richness(NsP18, Correction="Jackknife")

# Diversity profile. Very variable, 1000 simulations required.

DPP18 <- CommunityProfile(Diversity, NsP18, Correction="UnveilJ",

NumberOfSimulations = 1000, Alpha=Alpha)

plot(DPP18)
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