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Abstract 
Similarity-based diversity (Leinster and Cobbold 2012) encompasses classical measures of diversity, including the number 
of species, Shannon and Simpson diversity, and also phylogenetic and functional diversity. We derive two estimators to 
allow applying it to real, often under-sampled data, and its decomposition into alpha, beta and gamma diversity when an 
assemblage of communities is considered. 
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Introduction 

It is still surprising that a so widely used ecological 

concept, such as the concept of diversity, is still so debat-

ed. Ecology is rich of such recurring debates on concepts 

(e.g. the “ecological resilience” concept, see Gallopín 
2006, or the “functional trait” concept, see Violle et al. 
2007) that could nevertheless be seen as part of a funda-

mental theoretical corpus. This may be why one may 

consider that ecology is still a “young” science (Weiner 

1995). Practically, the notion of diversity is more or less 

consensual among field ecologists. Very roughly, the 

diversity of an ecological system is even higher than the 

individuals in the system are “different”. Two ecological 

systems are even more different than their individuals are, 

too. Problems arise when we move from words to mathe-

matical quantification. Entropy, viewed as the average 

surprise provided by the data (Shannon 1948, MacArthur 

1955), paved the way of a coherent theoretical framework 

(Hurlbert 1971) that respects a set of meaningful axioms 

(Rényi 1961, Patil and Taillie 1982) including discarding 

species identities, continuity relatively to the probabilities 

of occurrence of species and the Pigou-Dalton (Dalton 

1920) property (replacing an individual of a more abun-

dant species by an individual of a less abundant species 

increases diversity). Generalized entropy, namely HCDT 

entropy (Havrda and Charvát 1967, Daróczy 1970, Tsallis 

1988), allows moving the cursor, the order of diversity  , 

from rare to abundant species. Conversion of entropy into 

Hill numbers (MacArthur 1965, Adelman 1969, Hill 

1973) provides the effective numbers, i.e. the number of 

equally-frequent entities (e.g. species or communities) 

which would yield the same diversity value as the data. 

The product of the effective number of communities (Jost 

2007), namely the   diversity,by   diversity (the average 

diversity of communities) is equal to the   diversity of a 

mixture of communities (i.e. a meta-community). HCDT 

entropy and Hill numbers have been applied to phyloge-

netic and functional diversity, and, though always perfect-

ible, solutions have been proposed to most issues: the 

correspondence between HCDT entropy and Hill numbers 

(Jost 2006, Marcon and Hérault 2014a), the decomposi-

tion of diversity according to Jost’s (Jost 2007, Chiu et al. 

2014) or Routledge’s definition (Marcon and Hérault 

2014a, Marcon et al. 2014) of   diversity and robust esti-

mators (Grassberger 1988, Chao and Shen 2003, 

Haegeman et al. 2013, Zhang and Grabchak 2014). 

Recently, a major step forward was made by 

Leinster and Cobbold (2012) who introduced  a general 

measure of diversity denoted    , the similarity-based 

diversity. Encompassing all previously cited measures, it 

allows a direct measure of diversity as the inverse of the 
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average ordinariness of species. The latter is defined as its 

average similarity with other species: the topology of 

species, i.e. the place of this species in a multivariate 

space, does rely on species-to-species similarity. Parame-

terizing the definition of the average (Hardy et al. 1952) 

allows choosing the importance of rare species. The great 

improvement of this measure is to build on a species-to-

species distance matrix directly. This is a very desirable 

property that allows taking into account not only evolu-

tionary or functional distances but also any other kind of 

paired relationships (Leinster and Cobbold 2012). Let’s 
focus on functional diversity. While evolutionary relation-

ships are naturally represented by a phylogenetic tree, 

functional diversity is more generally calculated from a 

matrix of multivariate distances, which is often highly 

distorted later when transformed into a functional dendro-

gram (Chiu et al. 2014). In addition to being problematic 

for the calculation of the functional diversity, this over-

simplification of the raw trait matrix is extremely frustrat-

ing for field ecologists knowing the many difficulties 

encountered to measure these batteries of functional traits, 

especially in hyper-diverse ecosystems (Baraloto et al. 

2010). Knowing that single trait values or single trait 

variation axis are often inadequate predictors of the spe-

cies fundamental niche (McGill et al. 2006), losing the 

multivariate information when estimating diversity pre-

vents taking into account unique combinations of traits 

that influence ecosystems that are responsible for the 

ecosystem effect of a given species (Eviner and Chapin 

2003). Up today, this similarity-based diversity     still 

lacks both (i) a robust estimator and (ii) a decomposition 

framework. First, it has long been recognized that the 

observed diversity depends on the sample size (e.g. Wolda 

1981), so that estimation-bias corrected estimators are 

required (Beck et al. 2013, Butturi-Gomes et al. 2014). 

Second, Leinster and Cobbold have said very little about     decomposition into  ,   and   components. If the 

path is relatively well marked for diversity indices based 

on dendrograms, it remains to extend this analysis to the 

similarity-sensitive ones. 

In this paper, we first recall the definitions and du-

ality between similarity-based diversity and Ricotta and 

Szeidl’s (2006) entropy    . We propose two estimation-

bias corrected estimators: the first one is an implementa-

tion of the Horvitz-Thompson (1952) estimator, the other 

is built on the estimation of the ordinariness of unob-

served species. Then we derive the decomposition of both     and     and provide a definition of   diversity and 

entropy. 

1 Methods 

1.1 Notations 
Consider a random sample taken from a meta-

community made of several local communities. Abun-

dances of species in each local community is denoted      
(          is the index of species,   the index of com-

munities).    is the number of individuals of species   in 

the meta-community,    the number of individuals sam-

pled in local community   and   the total number. The 

same notations are used for probabilities of occurrence      
which are unknown but estimated with  ̂          ⁄ . 

Community weights are   : they may be equal to    ⁄  

but any positive values summing to 1 are allowed. We 

assume that    ∑         for all species. This may be 

understood as the definition of our meta-community: the 

assemblage of communities whose species probabilities 

are the weighted average of those of communities. Diver-

sity of the meta-community is   diversity. Diversity of 

local communities is   diversity. 

Species similarity is introduced as a square matrix   

of dimension     whose elements      are the similarity 

between species   and  . Similarity is between 0 and 1 by 

definition, and       : any species is completely similar 

to itself. A detailed presentation of the possible matrices 

can be found in Leinster and Cobbold (2012) and is not 

repeated here. A matrix of particular interest is     , the 

identity matrix where each species is completely different 

from the others, used to measure neutral diversity. The 

definition of     can be extended to relatedness matrices, 

which only require that all terms      are positive, and the 

diagonal terms strictly positive (see appendix A5 of 

Leinster and Cobbold 2012). Our results remain valid for 

relatedness matrices except for our new estimator which 

explicitly supposes that a species similarity with itself is 1. 

1.2 Definition of     and     
A species ordinariness is defined as its average simi-

larity in the community: 

    ∑        (1) 

    is the inverse of the generalized mean of order     (Hardy et al. 1952) of the community’s species 
ordinariness:     (∑          )      ;          ∏        

(2) 

In other words,     ⁄  is the average ordinariness 

of species of the community. The generalized mean al-

lows giving more or less importance to rare species. 

It is the deformed exponential of order   of the en-

tropy of Ricotta and Szeidl (2006):       ∑              ∑            ;          ∑         
(3) 
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Diversity is a monotonic, increasing function of en-

tropy, which is more easily written with the formalism of 

deformed logarithms (Tsallis 1994). For    :                

    [      ]      

(4) 

The relation between entropy and diversity is the 

same as that of HCDT entropy and Hill numbers:                     
 

(5) 

1.3 Estimation bias correction 
As many other measures of diversity,     suffers 

estimation bias (Dauby and Hardy 2012). The plug-in 

estimator, built by simply plugging  ̂  into the formula of    , is biased for two reasons: unobserved species (Chao 

and Shen 2003) and the nonlinearity of  diversity with 

respect to probabilities (Bonachela et al. 2008). 

Bias-corrected estimators exist for HCDT entropy 

(Marcon et al. 2014), including the Horvitz and Thompson 

(1952) estimator first adapted by Chao and Shen (2003) 

for Shannon entropy. We use it here to estimate    . We 

then propose a new estimator of    . 

1.3.1 Chao-Shen estimator     is the sum over species of the measure             . Unobserved species are responsible for 

unobserved terms of the sum. An unbiased estimator of 

such a sum has been derived by Horvitz and Thompson 

(1952): each observed term is divided by the probability 

for the species to be sampled: the lower it is, the higher    

is weighted in the sum. 

Chao and Shen (2003) proposed to combine it with 

the estimator of the sample coverage. The total probability 

of occurrence of unobserved species is by definition 1 

minus the sample coverage (Good 1953), which can be 

estimated from the data following Zhang and Huang 

(2007): 

 ̂    ∑             
    (6) 

  is the sample size and    the number of species ob-

served   times in the sample. This is an improvement of 

the well-known Turing’s formula  ̂       ⁄ . The 

observed species probabilities can be better estimated by { ̂ ̂     ̂ ̂ } where   is the number of observed species.    ̂ is the estimated total probability of unobserved 

species. 

We also have to estimate    . The observed   

matrix lacks the     columns of unobserved species, 

and the vector of probabilities lacks the corresponding 

probabilities { ̂       ̂ }. Nothing is known about the 

similarity of unobserved species with observed ones. A 

reasonable assumption is that their average similarity with 

any other species is identical to the average similarity 

between observed species,  ̅  (∑          ) (    )⁄ . 

Since the sum of missing probabilities of species is known 

to be    ̂, an estimator of     is: 

(  ̃)  ∑ ̂ ̂       (   ̂) ̅ (7) 

The first term is the sum over observed species of 

their similarity with species   and the second term is the 

expected sum over unobserved species. Plugging the esti-

mator of    and that of     into the Horvitz-Thompson 

estimator, an estimation-bias corrected estimator of     

is: 

 ̃   ∑  ̂ ̂     (  ̃)   (   ̂ ̂ )   (8) 

The estimator of diversity is  ̃      ̃  
.  

1.3.2 Alternative estimator 
Instead of correcting the estimator for unobserved 

species, we now want to explicitly estimate their contribu-

tion to the value of diversity. 

The observed   matrix lacks     lines and col-

umns. The actual   matrix is (only bold elements are 

known): 

( 
   

              ̅        ̅            ̅  ̅        ̅   ̅   ̅         ̅   ̅  ̅   ) 
    

If    , diversity can split into two terms: 

    (∑            ∑           )     
         

(9) 

The first term   is easy to estimate, as in the Chao-

Shen estimator: 

 ̂  ∑ ̂ ̂ (∑ ̂ ̂        )  (   ̂) ̅    
    (10) 

The second one is more problematic: 
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  ∑   ̅               (11) 

The number of terms is unknown, as is each   , but   can be estimated following Zhang and Grabchak 

(2014). We define: 

  ∑   ̅             (12) 

  is a linear diversity index, using the terminology 

of Zhang and Grabchak. It can be estimated (derivation in 

Appendix 1) by: 

 ̂    ∑   ∑      
        ̅  [∏     

   ] [∏(         ) 
   ] (13) 

  is the sum of the terms concerning unobserved 

species, so observed terms must be subtracted from  ̂. The 

improved estimator of     is thus: 

 ̃   ( ̂   ̂  ∑ ̂ ̂ ( ̅(   ̂ ̂ )   ̂ ̂ )      )     
 (14) 

The estimator of     is: 

 ̃    ̂   ̂  ∑  ̂ ̂ ( ̅(   ̂ ̂ )   ̂ ̂ )            (15) 

If    , estimating entropy is easier. It can be split 

into two terms: 

     ∑           ∑               (16) 

As above, the first term is estimated from the data: 

 ̂   ∑ ̂ ̂   (∑ ̂ ̂        )  (   ̂) ̅    (17) 

The second term addresses unobserved species: 

   ∑      ̅            (18) 

We define the linear diversity index: 

   ∑      ̅          (19) 

W can be estimated by (Appendix 1): 

 ̂  ∑   ∑    ̅   [∏(         ) 
   ]    

       (20) 

Finally:  ̃    ̂   ̂  ∑ ̂ ̂   ( ̅(   ̂ ̂ )   ̂ ̂ )    

 ̃     ̃  
 

(21) 

1.4 Decomposition of entropy 
We decompose entropy and diversity following 

Marcon et al. (2014). Entropy and diversity can be meas-

ured in each community. When communities are pooled, a 

meta-community (whose species probabilities are the 

weighted average of those of communities) is defined. 

Entropy and diversity of the meta-community are called  . 

The   entropy of the meta-community is the weighted 

average entropy of communities, i.e. we follow 

Routledge’s (1979) definition of   entropy. Its deformed 

exponential is   diversity (which is thus not the average 

diversity of communities). Entropy is decomposed addi-

tively, according to Patil and Taillie's (1982) concept of 

diversity of a mixture. Diversity is decomposed multipli-

catively, and both decompositions are equivalent. Our 

purpose here is to characterize   entropy, beyond defining 

it only as the difference between   and   entropy. 

The   entropy of community   is: 

        ∑                (22) 

The   entropy of the meta-community is the 

weighted average entropy of communities: 

     ∑         
  ∑   ∑                 (23) 

Algebra detailed in appendix 2 gives the expression 

of   entropy: 

     ∑   ∑   (                )  (24) 

  entropy is the generalized Jensen-Shannon diver-

gence (Marcon et al. 2014) between the distribution of    

in each community and in the meta-community. 



The Decomposition of Similarity-Based Diversity and its Bias Correction —5/12 

The   diversity of the meta-community is the de-

formed exponential of its   entropy: 

            (∑  ∑            )     
 (25) 

  diversity can be obtained by taking the deformed 

exponential of the decomposition of entropy: 

       
             

 
(26) 

1.5 Decomposition of diversity 
It is also interesting to directly decompose diversity 

to characterize   diversity. It is usually only defined as the 

ratio between   and   diversity (Tuomisto 2010) or as a 

transformation of   entropy (Marcon et al. 2012, 2014, 

Marcon and Hérault 2014a). 

The inverse of     
 is the generalized mean of order     of    : 

      (∑         )     
 (27) 

From            and Routledge weighting of 

alpha diversity, simple algebra (Appendix 3) yields: 

      (∑   
      ⁄     ⁄    )     

 (28) 

As      ⁄  is the average ordinariness of species,      ⁄  is the average ordinariness of communities where 

ordinariness of community   is defined as 
     ⁄     ⁄ , that is to 

say alpha ordinariness divided by gamma ordinariness. 

We may consider each community as an assemblage 

of monospecific populations. Then, each population’s 
diversity is        , and weights are   . Introducing 

these values into eq. (28) yields          
: as shown by 

Rao and Nayak (1985) for entropy, the diversity of an 

assemblage of species is the   diversity between its mon-

ospecific assemblages. 

2 Results 

2.1 Test of bias correction 
We used the Barro-Colorado Island (BCI) 50-ha plot 

forest inventory (Condit 1998, Hubbell 1999, Hubbell et 

al. 2005). Year 2005 census contains 20852 individuals 

from 229 species, among which 24 have been observed 

only once. The sample coverage is close to 99.9%, allow-

ing to consider that the inventory is almost exhaustive and 

to use it as a reference to test the efficiency of estimators 

applied to subsamples. We set species similarity equal to 

2/3 inside a genus, 1/3 inside a family, and 0 outside fami-

ly. The average similarity between pairs of distinct species 

is  ̅        The similarity matrix is somehow rough but 

no better data was available for such a number of species. 

We simulated inventories between 100 and 2000 in-

dividuals in a multinomial distribution respecting same 

species probabilities. Simulations were repeated 1000 

times, estimated entropy averaged and finally transformed 

into diversity for plotting. 

 

Figure 1: Estimation of BCI diversity       (a) and       (b) 

depending on sample size. The plug-in estimator (plain line) is 

the least effective. The Chao-Shen estimator (dashed line, grey-

shaded envelope) performs better than our new estimator (dotted 

line, dashed envelope) for small values of   but our new estima-

tor is very effective for high values of  . Envelopes are the 2.5% 

and 97.5% quantiles of simulated values. The horizontal line is 

the diversity of the whole data set. 

Simulated estimations are plotted in Figure 1. 95% 

confidence envelopes are shown: simulated samples are 

realizations of the assumed multinomial distribution of the 

community; stochasticity is not due to the estimators but 

to sampling. The best estimator depends on the value of  . 

Their correction is almost identical at       (not 

shown). At      , diversity can be estimated very accu-

rately by the new estimator with a sample whose size is 
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less than the number of species of the community. Follow-

ing Marcon et al. (2014); we choose a pragmatic estima-

tion-bias correction using the maximum value of the two 

estimators. 

2.2 Partitioning functional diversity 
We used the same tropical forest dataset as Marcon 

and Hérault (2014a), made of two 1-ha fully inventoried 

plots in the Paracou field station in French Guiana. 1124 

individual trees (diameter at breast height over 10 cm) 

have been sampled among 229 species. Four key func-

tional traits were addressed: seed mass and tree maximum 

height (Hérault et al. 2011), and specific leaf area and 

wood specific gravity (Baraloto et al. 2010). A dissimilari-

ty matrix was first built using the Gower metric by the 

daisy function of the cluster package (Maechler et al. 

2014) for R (R Development Core Team 2014). The simi-

larity matrix   was defined as 1 minus the normalized 

dissimilarity matrix (i.e. all values were divided by their 

maximum), so that its values are between 0 (the less simi-

lar pair of species) and 1 (the diagonal of the matrix). 

We calculated diversity of order 1. Neutral   diversi-

ty is 134 effective species. Similarity-based functional   

diversity is 1.49 effective species.  It can be interpreted as: 

the average species ordinariness is      ⁄      . It is 

also a Hill number: 1.49 completely different species with 

equal frequencies would have the same diversity as the 

observed meta-community made of 229 species. This is a 

very small value; due to the low functional distances be-

tween species in the similarity matrix:  ̅      . 

Neutral   diversity is 1.46 effective communities: 

the species distributions are very different between the 

communities. Yet, functional   diversity is 1.003: almost 

no functional   diversity is detected between the commu-

nities. Figure 2 shows the functional diversity profile of 

the meta-community: its values are almost constant what-

ever  . 

3 Discussion and Conclusion 

In this paper, we derived the decomposition of simi-

larity-based diversity     and proposed two estimators to 

reduce estimation bias from the level of the plug-in esti-

mator. The Chao-Shen estimator is the best for small or-

ders of diversity but our alternative estimator outperforms 

it for higher orders. 

Similarity-based diversity is preferred to estimate 

functional diversity from a distance matrix because it does 

not require building a dendrogram and so it preserves the 

topology of species in the space of functional traits. Even 

if we focused mainly on the functional diversity, the 

method works equally well with any similarity measures. 

As highlighted by Leinster and Cobbold, similarity can be 

measured in any meaningful way: a genetic similarity will 

lead to a decomposition of genetic diversity; a molecular 

similarity will lead to a decomposition of molecular diver-

sity, and so on. Results are effective number of basic enti-

ties and entity assemblages which have the same desirable 

properties as classical diversity measures. 

We estimated functional   diversity between two 

tropical forest plots previously investigated by Marcon 

and Hérault (2014a) with different methods. Our results 

confirmed and amplified the previous conclusions: func-

tional   diversity between these two quite similar forest 

communities is negligible (very close to 1). The main 

explanation is probably the high functional redundancy 

 

Figure 2: Functional diversity profile of the Paracou forest communities. Top left:   diversity of the meta-community; top right:   

diversity of each community (P006: plain line, P018: dotted line); bottom left:   diversity; bottom right:   diversity. Diversity is 

the number of effective species (effective communities for diversity) against the order  . It is estimated with bias correction. 
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between these two forest plots. The latter are spaced by 

only a few hundred meters and are located on similar 

topography and soils. It is always strange to observe how 

tropical forests can locally be extremely rich in species 

but exhibit a very low turnover in space (Condit2002, 

Novotny2007). This finding, well-documented for neutral 

diversity, seems here exacerbated from the perspective of 

the functional diversity. This supports the view that, in 

tropical forests, niche differentiation, if any, occur at very 

fine spatial scale through vertical distribution shaped by 

light access and micro-habitat complementarity (Kraft et 

al. 2008). Above this micro-habitat scale, functional as-

semblages are very similar to each other and governed by 

a few leading and continuous functional axes (Baraloto et 

al. 2010). This is supported by the flat shape of diversity 

profiles: giving more importance to rare species (lowering  ) has no effect because rare species are not less ordinary. 

In other words, according to our limited data and number 

of traits, functional diversity is brought by frequent spe-

cies and quickly saturated: adding more species or more 

communities does not increase it. 

The entropart package (Marcon and Hérault 2014b) 

for R, starting from version 1.2, allows diversity estima-

tion presented in the paper. 
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Appendix 1: Estimation of V and W 

We first estimate  . 

Let   [ ̅        ]    and   ,    , …,    be the  th partial derivative of   with respect to   . We have:   [ ̅     ̅   ]             ̅ [ ̅     ̅   ]                 ̅  [ ̅     ̅   ]      

   [∏     
   ]    ̅  [ ̅     ̅   ]      

At     , we evaluate these derivatives to be:          ̅               ̅     

   [∏     
   ]    ̅   [∏     

   ]    ̅      

Assuming ∑   [ ̅        ]         and  ̅ is a small positive number, we can introduce the Taylor expan-

sion of   at     in  . We have:   ∑  [ ̅        ]        ∑  [ ̅     ̅   ]       

  ∑  {  ∑    [∏     
   ]    ̅           

   }    

  ∑  {  ∑    [∏     
   ]    ̅        

   }    

    ∑  {  ∑    ̅    [∏     
   ]       

   }    

    ∑    ̅    [∏     
   ] 

   ∑           

Denote      ∑           : 

        ∑    ̅    [∏     
   ]      
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       ∑    ̅  [∏(    ) 
   ]      

    

  is thus a linear diversity index. It can be estimated according to Zhang and Grabchak (2014) by: 

 ̂    ∑   ∑    ̅  [∏     
   ] [∏(         ) 

   ]    
       

   is calculated the same way. 

Let      [ ̅        ]. We have:      [ ̅     ̅   ]        ̅ ̅     ̅    

       ̅  [ ̅     ̅   ]  

        ̅  [ ̅     ̅   ]              ̅     [ ̅     ̅   ]  

At     :           ̅      

We introduce the Taylor expansion of   at     in  :    ∑    [ ̅     ̅   ]     ∑  {∑           ̅           
   }    

  ∑  {∑    ̅         
   }    

  ∑    ̅    
   ∑           

  ∑    ̅        
    

Its estimator is: 

 ̂  ∑   ∑    ̅   [∏(         ) 
   ]    
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Appendix 2: decomposition of entropy 

We start from the multiplicative decomposition of diversity:              
 

We write the deformed logarithm of the equality:                             (       )(       ) 

We replace        
 by     

 and we factorize the last two terms:            (       )[          ] 
We replace     

 by its value:            (       ) [       ∑   ∑                ] 
           (       )(∑  ∑            ) 

We replace        
 by    (         ⁄ ) and introduce probabilities: 

             ∑          ∑    ∑               (∑  ∑            ) 

           ∑    ∑             ∑              

We replace    by ∑        and factorize:            ∑                        

This result can be written:      ∑   ∑   (                )  
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Appendix 3: decomposition of diversity 

Recall the definitions of   and   diversity: 

     (∑         )     
 

     (∑  ∑            )     
 

  diversity is   divided by  : 

              ∑          ∑   ∑             
     (∑   

∑            ∑          )      (∑   
            )     

 

This can be rewritten:       (∑   
      ⁄     ⁄    )     
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