Voisin’s conjecture for zero-cycles on Calabi–Yau varieties and their mirrors - Géométrie
Article Dans Une Revue Advances in Geometry Année : 2019

Voisin’s conjecture for zero-cycles on Calabi–Yau varieties and their mirrors

Résumé

We study a conjecture, due to Voisin, on 0-cycles on varieties with $p$$g$ = 1. Using Kimura's finite dimensional motives and recent results of Vial's on the refined (Chow-)Künneth decomposition, we provide a general criterion for Calabi-Yau manifolds of dimension at most 5 to verify Voisin's conjecture. We then check, using in most cases some cohomological computations on the mirror partners, that the criterion can be successfully applied to various examples in each dimension up to 5.
Fichier principal
Vignette du fichier
1706.00472v1.pdf (297.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02306822 , version 1 (23-10-2024)

Identifiants

Citer

Gilberto Bini, Robert Laterveer, Gianluca Pacienza. Voisin’s conjecture for zero-cycles on Calabi–Yau varieties and their mirrors. Advances in Geometry, 2019, 20 (1), pp.91-108. ⟨10.1515/advgeom-2019-0008⟩. ⟨hal-02306822⟩
23 Consultations
0 Téléchargements

Altmetric

Partager

More